Pistolas de asalto

El concepto de «pistola ametralladora» no es nuevo: desde que la pistola semiautomática alcanzó la madurez, casi todo diseñador intentó alcanzar este nuevo logro.

Esta búsqueda fue una de las más largas y competitivas de todo el siglo XX. Pero ni siquiera John Moses Browning, uno de los dioses de los diseñadores de armas, pudo lograrlo. Según se dice, sus observaciones le dijeron que una pistola realmente automática sería siempre incontrolable, al punto de ser un arma inútil porque resultaría imposible de apuntar luego del primer disparo.

El problema era que, cuanto más pequeña es el arma, es también menos pesada. Y es obvio que una pistola liviana disparando en modo automático se haría incontrolable, porque el peso y el tamaño del arma misma es algo que siempre ayudó a hacerla más estable y fácil de empuñar. Al mismo tiempo, al reducir el tamaño, por motivos mecánicos, se aumenta la cadencia de fuego: los mecanismos tienen menos espacio para recorrer, y por lo tanto repiten el ciclo de disparo más rápidamente.

Las dos cosas combinadas hicieron que prácticamente todos los intentos por lograr una pistola realmente automática, fácil de operar y disparar, precisa y confiable, fallaran. Sin embargo el interés se mantuvo durante todo el siglo XX, pensando en diferentes artilugios que ayudaran a hacer controlable el arma. Y es que el concepto prometía mucho.

Uno de estos intentos fue la culata plegable o removible, ya ensayada en las pistolas alemanas Mauser C-96 y Luger P-08 de antes de la Primera Guerra Mundial. Estas raras mezclas de carabinas y pistolas eran una muestra de lo que vendría. La Luger no podía hacer disparos en ráfagas, a diferencia de la Mauser C-96, que sin embargo era imposible de disparar de esta manera a menos que se usara la culata. A cambio de esto prometían ser un poco más precisas y a veces, dar más alcance. Sin embargo, fueron relegadas como curiosidades. Después de la Segunda Guerra Mundial los soviéticos volvieron a intentar este concepto con la pistola Stetchkin, que pretendía reemplazar tanto a las pistolas como a los subfusiles.

Pistola Luger con cargador de sartén y culata removible. Era uno de los aparatosos intentos de principios del siglo XX tendientes a crear una carabina y luego un subfusil a partir de una pistola. Al igual que las ideas montadas sobre la Mauser C-96, no fueron nada prácticas y quedaron como una curiosidad histórica.

Esto no fue posible, de manera que se siguieron fabricando subfusiles por un lado y pistolas por el otro. Las armas dedicadas, que no podían funcionar como comodines, seguían siendo más confiables y precisas.

Sin embargo, la idea de crear un híbrido funcional entre estos dos tipos de armas llevó a la creación de una incipiente clase de pistolas de asalto. Este nombre suena un poco mejor que el de pistola ametralladora, que es demasiado exagerado. De todas maneras hay, como siempre, problemas con los conceptos.

Es necesario aclarar que en EE.UU. se llama pistola automática (ya que todo el proceso de disparo es automático, solo hay que apretar el gatillo) a lo que el resto del mundo llama pistola semiautomática (para no confundir, porque cada vez que se quiere disparar, hay que volver a apretar el gatillo). De manera que, para evitar confusiones, en este artículo se utilizará, al igual que en otros textos, el término de pistola de asalto, para referirse a las pistolas que pueden disparar varios proyectiles sucesivos con una sola presión del gatillo. Los estadounidenses se refieren muchas veces a las pistolas de asalto como machine pistol (denominación que también utilizaron los alemanes a veces, machinenpistolen), lo cual muchas veces se traduce erróneamente al castellano como «pistola ametralladora» (lo cual es una exageración). Otra denominación a veces usada en inglés, en este caso más preciso, es burst fire pistol (pistola de disparo en ráfaga).

Sin embargo, las diferencias de criterio no son solo de nombre. Mientras los diseñadores europeos piensan en armas más parecidas a las pistolas, los estadounidenses hablan de pistolas de asalto cuando se refieren a subfusiles cortos o incluso a fusiles empequeñecidos de diversas maneras. Muchos diseños de EE.UU. son realmente extravagantes, por decir poco, aparatosos híbridos formados de otros diseños, que no son realmente pistolas de asalto, sino subfusiles o fusiles cortos, casi imposibles de usar con una sola mano debido a su peso y tamaño.

A medio camino se quedan otros diseños no enmarcados en ninguna tendencia mayoritaria de pensamiento. Los israelíes por ejemplo, luego del éxito de su subfusil Uzi, produjeron dos versiones menores. La mini-Uzi y la micro-Uzi surgieron en la década de 1980, pero no dejan de ser subfusiles pequeños, que todavía conservan culatas plegables especiales. A pesar de todos los esfuerzos hechos por los diseñadores, no dejan de ser poco controlables a la hora de disparar y tienen que ser usadas a muy corta distancia, por personal bien entrenado en su uso.

Con el tiempo los diseñadores de todo el mundo se dieron cuenta de que era realmente difícil pensar en armas tan pequeñas, de puño, que pudieran disparar ráfagas completas, y por eso se abocaron a la creación de armas que lanzaran pequeñas ráfagas de tres disparos.

Fue así que, aunque las diferencias de criterio siguen existiendo, se tiene un criterio más generalizado acerca de a qué nos referimos cuando decimos pistola de asalto. A continuación veremos tres de los casos más famosos y exitosos, que marcaron algún hito en la historia de este concepto durante el Siglo XX.

Heckler & Koch VP70

A pesar de lo que muchos piensan, fue la VP70, y no la Glock, la primera pistola en el mundo con un marco hecho a base de polímeros. Este diseño nació así, revolucionario, desde el comienzo; no es raro que su origen sea la famosa compañía alemana Heckler und Koch, que luego se hizo famosa en gran medida por lo arriesgado de sus diseños, dentro de la ortodoxia generalizada de la industria. La VP70 apareció en 1968 como un proyecto más, pero hundía sus raíces directamente en la Segunda Guerra Mundial. Heckler y Koch habían sido diseñadores de la conocida fábrica de armas Mauser, en Oberndorf.


La VP70Z es la versión civil, que no puede hacer disparos en ráfaga.

Allí, casi al final del conflicto, se había estado trabajando en una pistola que fuera lo más sencilla de fabricar y usar, para dotar a toda la población de una defensa frente al avance soviético. De allí derivaba el nombre del diseño, VP (por «Volk Pistole», pistola del pueblo). Sin embargo, este proyecto no llegó a ninguna parte debido a la derrota alemana. La VP70 había sido diseñada por Helmut Weldle, uno de los mejores ingenieros de H&K, y por Alex Seidel, el tercer miembro co-fundador de la compañía. El número 70 apareció luego, cuando comenzó a fabricarse en 1970.

Se trataba de un arma totalmente adelantada a su tiempo, y esto fue en parte lo que la condenó a su desaparición. La VP70 inauguró la clase de las pistolas de asalto.

Así, como cualquier arma de puño, solamente disparaba un proyectil por vez. Pero si se le agregaba una culata especial, se convertía en un arma que disparaba en ráfagas de 3 disparos consecutivos.

Configuración general

Se trata de una pistola de doble acción, o sea que no hay que montarla para que dispare. Carece de martillo y funciona por aguja percutora. No dispone de ninguna clase de seguros, porque el arma está pensada solamente para que se dispare si el gatillo es presionado; no se activa por caídas o golpes bruscos. El problema es que por lo tanto el gatillo es muy duro, lo que se compensa con un guardamonte grande en donde caben dos dedos. El único seguro es un botón en la parte trasera del guardamonte, que inhabilita el gatillo.

El mecanismo de disparo es por inercia. El cajón de dichos mecanismos está hecho de material sintético y tiene solamente 4 partes móviles. El cargador permite llevar 18 proyectiles, lo que ayuda mucho si el arma tiene que dispararse en modo de ráfagas de 3 disparos. Recordemos que en la época de este diseño, los cargadores de 9 mm Luger Parabellum no superaban generalmente los 12 cartuchos.

Pero otro gran adelanto de esa época era su estructura completamente hecha de polímeros sintéticos. Este material de alto impacto fue probado duramente y logró resistir hasta 200º de temperatura sin deformarse. Sin embargo hay partes de metal, además del cañón, como la corredera. Se trata en suma de un arma fácil de producir, tal como pretendía ser su diseño anterior.

La VP70M era el único modelo capaz de llevar la culata que permitía el disparo automático en ráfagas. Nótese el selector en la parte superior, que solo marca 1 o 3. Una de las características de este arma era la ausencia casi total de seguros y partes externas móviles.

Ráfagas a 2.200 disparos por minuto

La VP70 fue la primera pistola de asalto, a pesar de su limitación a 3 disparos rápidos. Esto solamente era posible si se le adaptaba una culata a la parte trasera, convirtiéndola en una especie de carabina pequeña. Recordemos que no era la primera vez que se hacía esto: tanto la Mauser C-96 como la Luger tenían versiones de este tipo. La versión civil de la VP70, la VP70Z («Zivilversion») no podía llevar esta culata, y la VP70M («Militär») era la única que tenía los orificios necesarios en la parte trasera.

En la culata (hecha casi totalmente de material sintético) se encontraba un selector de disparo, que tenía solamente dos posibilidades: 1 y 3. Es importante aclarar que el uso de la culata no era solamente para darle más control al diseño cuando disparaba. Sin este aditamento era totalmente imposible el disparo automático, debido a que los mecanismos no lo permitían. La culata tenía en ella el selector de disparo, y si no se la insertaba correctamente, la pistola no disparaba más que un proyectil por vez.

Una curiosidad de dicha culata era que servía también como estuche. Siendo hueca en su mayor parte, se podía guardar en ella a la pistola completamente lista para la acción y sacarla para utilizarla en pocos segundos.

En modo automático, la VP70M tenía una cadencia de tiro teórica de 2.200 disparos por minuto. Esto generaba sin duda un gran estruendo, y el arma sufría un gran stress para el que estaba diseñada.

Disparo de la VP70; previamente el tirador la saca de su espacio en la culata para montarla sobre la misma.

¿Demasiado poderosa?

Como se dijo antes, la ruina de la VP70M fue prometer demasiado, en un momento complicado de la historia. Al principio fue un gran suceso, y la fábrica concretó ventas a varias fuerzas armadas y policiales de Asia y África. Por seguridad, para el mercado civil se hizo la VP70Z, que no podía bajo ninguna circunstancia hacer fuego automático. Sin embargo, pronto comenzaron los problemas. A muchos organismos de seguridad les preocupaba que este arma pudiera caer en manos equivocadas. Si un terrorista de la época podía crear caos con una pistola semiautomática, ¿qué haría con una capaz de disparo automático, aunque fuera solamente en ráfagas cortas y usando una culata removible?

Sin duda se exageró demasiado el poder del arma, que no era una ametralladora de mano ni nada similar. La culata la convertía en más aparatosa que una pistola convencional, y bien utilizada podía servir a cualquier fuerza de seguridad del mundo. A pesar de esto, muchas fuerzas de seguridad europeas comenzaron a preocuparse seriamente por la VP70M. Tal vez en un esfuerzo por ganar un mercado menos suspicaz, la H&K fabricó unas 400 unidades en calibre 9×21 mm IMI, que se salían de ciertas legislaciones sobre armas, y este modelo fue puesto a la venta en Italia principalmente (aunque algunas aparentemente llegaron a EEUU). Mantenían la culata, pero esta no permitía el disparo automático.

Pero nada se pudo hacer para mantener la VP70 en producción. Varias versiones dicen que esta se detuvo en la década de 1980, pero no hay una fecha cierta. Algunos dicen que fue en agosto de 1989, pero otros dicen que fue varios años antes. Sin embargo, aparece en el proyecto para reemplazar a la Colt 1911 en las FF.AA. de EEUU mediados de los 80s, dando, por cierto, resultados bastante malos.

Y es que en realidad, algunos dicen que la VP70 no terminó de cumplir con todo lo necesario para ser una pistola de asalto exitosa. Una de las quejas recurrentes es que, para el disparo en ráfaga, había que hacer mucha fuerza para mover el gatillo, lo cual era poco práctico y dificultaba el agarre preciso. Además, aunque era precisa en modo semiautomático, en pruebas de tiro generalmente la ráfaga se dispersaba bastante, y requería mucho entrenamiento el centrarla más, asegurando que todos los proyectiles impactaran el blanco y lo hicieran relativamente cerca.

Prueba de disparo de la VP-70M en un campo de tiro. El tirador muestra como, en disparo semiautomático, es capaz de dispararle a objetivos individuales a unos 10 metros de distancia, pero le resulta casi imposible hacer lo mismo con el modo en ráfaga, o también agrupar impactos en una silueta.

Beretta 93R

Este diseño italiano tomó la posta en materia de pistolas de asalto, cuando la VP70 alemana comenzó a tener problemas de imagen. Se trata de un arma directamente derivada de la exitosa y famosa Beretta 92, que está en servicio en Italia y hasta logró romper definitivamente el reinado de la Colt .45 en las Fuerzas Armadas de EE.UU.

Al igual que el diseño de H&K, este arma puede hacer solamente ráfagas de 3 disparos. Pero tiene una diferencia sustancial: utiliza una culata separable, y puede disparar de manera automática sin ella, aunque esto esté contraindicado por la empresa.

Un primer plano de la Beretta 93R nos muestra sus principales características. Nótese el cargador largo, para aumentar la capacidad de disparo. Por lo demás, externamente es muy similar a la 92, con la gran excepción del pistolete (plegable bajo el cañón) que, ubicado delante del arco guardamonte, permite asir mejor el arma cuando se dispara en modo automático. El cañón más largo con bocacha apagallamas solo se incorporó en los primeros modelos.

Configuración general

Para facilitar el agarre del arma, especialmente cuando hace fuego automático, se diseñó una empuñadura más sencilla y compacta. Está pensada para que el usuario utilice sus dos manos: la derecha tomando el arma y apretando el gatillo, y la izquierda asiendo una pequeña manija que se pliega debajo del cañón. El pulgar izquierdo debe en teoría introducirse en la parte delantera del guardamonte mientras que el resto de la mano sostiene el arma. De esta manera la pistola es un subfusil en miniatura.

Para facilitar más el disparo en ráfagas, el cañón alargado del arma tiene un freno de boca ingenioso, que también actúa como bocacha apagallamas. Sin embargo este detalle parece corresponder solamente a las primeras unidades, y fue rápidamente abandonado.

La culata es opcional, aunque la empresa dice que es mejor usarlo, debido a que la pistola es muy temperamental en disparo automático. Viene en una funda especial, y tiene dos modos de extensión, para adaptarse a diferentes tipos de tirador.

Hay dos tipos de cargadores disponibles: de 15 disparos y otro de 20, que se reconoce instantáneamente porque sobresale un poco de la empuñadura, por debajo.

En acción

Según se dice, en modo automático la Beretta 93R es bastante precisa, debido a las ideas que se han incorporado en materia de ergonomía. Uno de los más señalados es el pistolete delantero, que mejora la antigua postura de asir la pistola con las dos manos. Esta práctica, muy aceptada en EE.UU. y en otros países, tiene el inconveniente de que las dos manos terminan haciendo mal el trabajo, cerrándose sobre una empuñadura demasiado grande. Con el pistolete se mejora la performance, ya que las dos manos se separan y así hacen más fácil de controlar al arma.

La Beretta 93R despertó, al igual que la VP70, muchas discusiones. Al igual que el caso anterior, se trataba de un arma excelente. Sin embargo encontró algunos problemas técnicos. Hacia mediados de la década de 1980 todavía estaba en proceso de desarrollo y no había salido al mercado. Aparentemente esto se debe a que el sistema de disparo era demasiado complicado. El mantenimiento y las reparaciones no podían llevarse a cabo «en casa» y necesitaban de personal adiestrado de la fábrica.

Esto reducía sin duda su atractivo comercial y militar, y finalmente el proyecto parece haber sido abandonado. Aunque la pistola no aparezca desde hace tiempo en el catálogo de la empresa, aparentemente ciertas unidades de seguridad italiana la utilizan.

Animación en 3D que muestra los componentes de la Beretta 93R y cómo dispara en sus diferentes modos.

Glock 18 y 18C

Derivada, como toda la familia, de la ya superfamosa Glock 17, este arma parece ser, realmente, la primera pistola de asalto del mundo, con todas las letras.

La Glock 17 fue, luego de la VP70, la segunda pistola en hacer un uso intensivo de materiales sintéticos. Tanto fue así que se corrió el rumor de que era posible hacerla pasar sin problemas por los detectores de metales de los aeropuertos, lo cual es totalmente falso. Después de todo, todavía el cañón y las municiones son de metal, entre otras piezas.

Uno de los primeros modelos de la Glock 18, con muescas en el cañón largo.

Esta revolucionaria pistola posee una gran sencillez de uso. Curiosamente no tiene seguro externo, a pesar de que hay tres sistemas diferentes para que la pistola no se dispare al ser golpeada (por ejemplo, si se cae). La Glock 17 solamente hace fuego si alguien aprieta de su gatillo.

El éxito de este arma hizo que su empresa fabricante comenzara a sacar versiones especiales, recamaradas para otros calibres como el .45 ACP o el 10 mm, para tiro de competición, para defensa personal, etc. Se tratan por lo general de «copias» de la Glock 17, que aprovechan la gran mayoría de sus piezas para ahorrar costos y ganar en calidad, pero difieren en pocos aspectos del modelo madre.

La pistola resultó tan buena que comenzó a ser usada por muchas fuerzas policiales. Fue así que la unidad antiterrorista EKO Cobra, de Austria, le pidió al fabricante que diseñara para ellos una versión totalmente automática del arma. La Glock 18 y 18C no están disponibles para civiles y en algunos países se requiere tener licencias especiales para poder comprarla y usarla.

La primera pistola de asalto del mundo

La Glock 18/18C aparece en el sitio institucional de Glock como «full automatic pistol», esto es, pistola completamente automática.

Esto lo logra sin hacer uso de ninguno de las tantos agregados ensayados por diseñadores anteriores. Sin culatas removibles, sin pistoletes, sin selectores de ráfagas cortas, ni nada parecido. La Glock 18/18C dispara hasta que no quedan balas, y es controlable usada a dos o a una mano.

Excelente imagen de una Glock 18C con cargador largo. Esto permite un uso más intensivo en las operaciones. Con el cargador de 17 disparos, la pistola se descarga muy rápidamente, a menos que el usuario esté bien entrenado. Obsérvese la diferencia de empuñadura con respecto a la 18, el modelo primitivo. La 18C posee los compensadores montados directamente en la corredera, de manera que las muescas del primer modelo no son visibles ni sobresale el cañón de la corredera.

La diferencia más esencial con respecto a la Glock 17 es un selector de disparo en la parte izquierda de la corredera. Por lo demás, las armas son muy similares en aspecto.

Las otras diferencias corren por parte de los dos diferentes modelos. La Glock 18 es el modelo más primitivo. Tiene el cañón más largo que la corredera, con tres muescas al final que actúan como compensadores para manejar mejor el culatazo.

El modelo 18C, más nuevo, tiene cuatro compensadores integrados en la corredera. Están ordenados en dos parejas; la más cercana al cargador es estrecha, mientras que la segunda pareja es más ancha. Esto permite mejorar todavía más el control del arma cuando entra en acción.

Disparo realmente automático

El selector de disparo es similar a cualquier otro de pistola, solamente que agrega la posibilidad de disparo automático. No hay opción para ráfagas cortas: el selector solo permite elegir entre disparos individuales o automáticos. Está localizado al final de la corredera, y gira sobre una pieza circular.

Una vez seleccionado el modo automático y apretado el gatillo, el arma vacía el cargador en un abrir y cerrar de ojos. Esto se debe a la enorme cadencia de disparo, de entre 1.100 y 1.200 disparos por minuto.

Una Glock 18C con culatín removible, la opción ideal para equipos especiales de la policía. Obsérvese cómo se inserta en la parte posterior de la empuñadura, detrás del cargador. Esto permite que el policía tenga la opción de usarla tanto como arma de asalto o como semiautomática.

Esto presentaba un pequeño problema para los cargadores standard de cualquier pistola 9 mm, que tienen un máximo de entre 17 y 21 disparos. Para la Glock 18/18C la empresa diseñó cargadores especiales de 33 disparos. Así se soluciona el siempre presente problema de la falta de munición en armas que disparan tan rápido.

El defecto es que el cargador de 33 disparos es realmente grande, sobresaliendo de la empuñadura ostensiblemente. Pero es un detalle menor, ya que puede usarse como respaldo junto con uno convencional de 17 disparos, que es el mismo que usa la Glock 17.

Según dicen los entendidos, el espectáculo de disparar una Glock 18/18C es realmente único. Por un lado las llamaradas de los compensadores, y por el otro, una lluvia de cartuchos vacíos volando hacia todas partes. El culatazo no parece ser algo que afecte seriamente la puntería o la mano del usuario.

Un tirador dispara casi 300 municiones al hilo con una Glock 18C con culatín. Una muestra de efectividad y confiabilidad.

Facilidad y precisión de uso

Impresionante imagen de una Glock 18C en acción. Pueden verse claramente las llamaradas que salen de los compensadores, montados directamente sobre el cañón y la corredera (que todavía ni siquiera ha comenzado a moverse).

Según dicen quienes la han probado intensamente, la Glock 18 es un arma sencilla de usar, que requiere entrenamiento, pero no demasiado. Sin embargo, la 18C aparentemente es todavía mejor, ya que el diseño de los compensadores integrados a la corredera es mucho más ingenioso y preciso. La gran ventaja sobre todos los diseños anteriores que ni siquiera salieron al mercado es que la Glock 18/18C es un arma realmente automática, y no puede disparar ráfagas cortas. Con algo de práctica se puede aprender a disparar ráfagas de tres, cuatro o cinco proyectiles, pero eso es a elección del usuario.

La Glock 18/18C es muy precisa, sobre todo hasta los 30 metros, y rompe muchos de los prejuicios sobre las pistolas de asalto, que ya eran calificadas como muchos como imposibles de construir. Compacta, precisa y fácil de usar, es también un arma convencional, sin ningún tipo de pieza o accesorio extraño a su clase.

¿Reemplazar a los subfusiles?

Sin duda una de las metas de las pistolas de asalto era ese, al menos en parte. No hay duda de que en ciertos ambientes un subfusil tiene grandes ventajas, como puede ser en un campo de batalla, ya que da mejor alcance y precisión, además de permitir usar munición de fusil (como sucede cada vez más frecuentemente en los nuevos diseños).

Sin embargo, hay situaciones en donde un subfusil es un aparato algo engorroso. Por mucho tiempo, los guardaespaldas de grandes personalidades o los guardias de seguridad de incógnito han usado versiones cortas de famosos subfusiles, como el MP5, o el mini-Uzi o micro-Uzi. Pero estos modelos tienen algunas desventajas intrínsecas a su diseño. Por un lado, siguen siendo muy grandes, ya que son simples versiones acortadas, no rediseños. Esto hace que un observador atento, como un potencial terrorista o secuestrador, pueda darse cuenta de que el guardia está fuertemente armado. Por otra parte, al ser más grandes son también más difíciles de sacar a la luz, estando escondido bajo sacos o ropas pesadas. Y es sabido que en ciertas situaciones, disparar medio segundo más tarde es disparar demasiado tarde.

Además, al no ser armas diseñadas desde la nada, a veces tienen problemas que sus versiones anteriores tenían en menor escala, pero ahora repotenciados. Una micro-Uzi es sin duda un gran arma, pero no es tan precisa como una Uzi, que es más pesada y maneja mejor el culatazo. Al perder peso y volumen, se pierde también precisión y facilidad de uso. Al utilizarla en ciertos contextos, el tirador puede llegar a herir o matar a otras personas, como es el caso del guardaespaldas en un lugar abierto.

Las pistolas de asalto no se piensan entonces como un arma militar de primera línea, sino para ciertos casos como el de las unidades que trabajan en la retaguardia, tripulantes de tanques o servidores de piezas de artillería, que pueden necesitar el apoyo de un arma de mano pero que no tienen espacio en sus funciones para cargar y mantener un subfusil. Otro de los campos en donde las pistolas de asalto son muy requeridas es el del contraterrorismo y las operaciones especiales. En estos casos, los comandos tienen que operar en ambientes muy cerrados, a muy corta distancia. En estas situaciones, la rapidez para apuntar cómodamente y disparar es fundamental, así como la seguridad de que el proyectil irá justo donde se lo desea (y si dos o tres golpean en ese punto, tanto mejor). En estos contextos, un arma más larga y pesada, como un subfusil, puede representar medio segundo de demora, el trabarse en algún sitio, etc.

Este fue el objetivo que se buscó durante décadas, y la VP70 y la Beretta 93R, aunque abrieron el camino, no lo lograron totalmente. La Glock 18/18C elimina todos de los inconvenientes previos (dificultad de manejo por la sobreelevación, escasez de munición, etc.) y termina logrando este objetivo.

El uso de compensadores en el cañón es sin duda la mejor opción. Los usuarios han manifestado que, incluso usando una sola mano, el arma es razonablemente controlable, sobre todo teniendo en cuenta su terrible volumen de fuego. Al parecer no es difícil hacer dos o tres impactos en el mismo blanco, una vez que uno se ha familiarizado con el ella. Claro que esto debe tomar un par de cargadores grandes, al menos. Pero es un precio bajo por un arma tan excelente. Es por eso que la Glock 18/18C puede reemplazar sin demasiados problemas a un subfusil en ciertas situaciones (no por nada su diseño fue solicitado por una unidad antiterrorista). Tan fácil de esconder y desenfundar como una pistola semiautomática cualquiera, esconde sin embargo el poder de hacer ráfagas controladas en espacios pequeños, incluso con una sola mano.

No hay otra arma en el mundo que haya podido demostrar esta cualidad, ni antes ni ahora. Por eso que la Glock 18 ya se ganó su espacio en la historia de las armas de fuego, junto con su hermana mayor, la Glock 17.

Sin embargo, como siempre sucede, no hay armas definitivas. La lista de prototipos y de propuestas para más pistolas de asalto continúan surgiendo, y seguramente en algún tiempo tendremos más ejemplos para comentar.

Granadas de mano

Al ser los chinos los descubridores de la pólvora, les tocó obviamente a ellos ser los inventores de los primeros artefactos destructivos. Además de utilizarla con propósitos recreativos, como fuegos artificiales, a veces las metían en tubos de cartón o posiblemente bambú, agregaban una mecha y luego de encenderla arrojaban estos explosivos de mano dentro de ciudades sitiadas o recintos cercados.

Sin embargo, este tipo de uso no se generalizó, y aparentemente estas primitivas granadas no fueron utilizadas durante mucho tiempo. Posiblemente debido a accidentes y episodios de mal uso, o a otras cuestiones, su historia se pierde.

Hacia el siglo XV hay datos que reflejan el uso de la pólvora dentro de vasijas de tierra cocida, la cual a veces se recubría con sogas o trapos. Esto impedía que el recipiente se rompiera o estallara al chocar con el blanco, dificultando la explosión de la pólvora (que de otra manera solo se quemaría).

No se puede hablar, sin embargo, de verdaderas granadas de mano sino hasta el siglo XVIII. Para esta época la pólvora era utilizada desde siglos atrás en toda Europa en las numerosas guerras entre estados. En cañones y las primeras armas de fuego, se la utilizaba como propelente, indispensables para el lanzamiento de los proyectiles.

En este momento se comenzaron a usar nuevos recipientes para la pólvora. Primeramente se hicieron de cristal fundido, pero luego se usó el hierro. Equipadas con mechas, estas bombas eran llevadas al campo de batalla por tropas especializadas. Conocidas como granadas por la similitud que tenían con el fruto de esta planta, los soldados que las lanzaban se agruparon en unidades de granaderos. Estos cuerpos ganaron mucha importancia en ciertos ejércitos europeos y luego americanos, nombres que todavía hoy se siguen utilizando.

Aunque son parte del imaginario de la guerra terrestre, las granadas de mano también participaron de la historia naval. Su uso era generalizado; los granaderos se subían a los palos del barco y aprovechaban la altura para lanzarlas hacia el buque enemigo, que buscaban destruir o abordar. En estos ambientes el potencial destructivo era enorme, ya que habían muchos materiales inflamables y explosivos.

Sin embargo, este tipo de granadas no eran muy prácticas. Eran pesadas, difíciles de manejar en combate y algo imprecisas. Lentamente su uso fue decayendo, pero luego resurgió. Con el tiempo, estas unidades dejaron de especializarse en su uso, y posteriormente las granadas más modernas, mucho más prácticas y eficaces. Hacia mediados del siglo XIX, particularmente en la Guerra de Crimea, la Guerra Franco-Prusiana y la Ruso-Japonesa, las granadas ya volvían a ser utilizadas. Para finales de la Primera Guerra Mundial, eran parte del equipo básico de todos los soldados.

Durante esas décadas, mejores diseños, mejores materiales explosivos y otras tácticas habían hecho posible y necesario su uso generalizado. Más potentes y seguras, todo esto les permitía que su tamaño fuera más reducido sin restarle por ello poder.

Pero, ¿qué es exactamente una granada de mano?

Descripción

Una granada de mano es un artefacto explosivo que, debido su pequeño tamaño, puede ser lanzado por un solo soldado hacia el enemigo, detonando a una distancia segura del lanzador.

A pesar de la creencia popular, las granadas no son extremadamente potentes. Su radio de acción (es decir, el área en la cual causan mucho daño, o incluso la muerte) suele estar en los 10 metros, como máximo (dependiendo de si tienen o no metralla), mientras que la onda expansiva más fuerte nunca pasa de los cinco metros. Esto es así por una cuestión lógica: no se puede lanzar una granada a más de 35 metros, de manera que tiene que haber una distancia mínima entre la granada y el lanzador, para que este no salga herido.

Debido a su peso y tamaño, los soldados no suelen llevar nunca más de tres o cuatro granadas. Teniendo en cuenta que un soldado actualmente carga una gran cantidad de equipo (fusil y munición, equipos y accesorios para el fusil, algo de comida y bebida en ciertos casos, otros equipos, etc.) cargar más granadas no es la prioridad. En casos especiales puede ser que el soldado disponga de más espacio y sepa que por su misión requerirá de más granadas, pero son, justamente, casos especiales.

El amplio uso que las granadas de mano vieron en ciertos países hace que todavía se las pueda encontrar abandonadas en excavaciones, basurales, etc. Después de las minas antipersonal estos artefactos son los más peligrosos de encontrar. Es importante que, aunque no se viva en un país recientemente involucrado en un guerra, se eduque a los niños y se los concientice a no tomar y manipular este tipo de artefactos. Las granadas son un ícono de la guerra y son fácilmente distinguibles; no es raro que un niño, al encontrarla, quiera jugar con ella. Estas granadas pueden o no ser recientes; muchas veces criminales o terroristas pueden abandonarlas para deshacerse de la evidencia. En todo caso son peligrosas: aunque tengan muchos años, igualmente pueden estallar. Es importante que se eduque a los niños para que avisen ante la presencia de este tipo de elementos, que solamente pueden ser manipulados por personal policial o militar competente.

El efecto destructivo de la granada se lo da el explosivo que carga dentro, generalmente unos pocos cientos de gramos. Cuando el explosivo era pólvora, era importante que el recipiente fuera fuerte y no se rompiera al impacto con el suelo; la pólvora de otra manera, al derramarse, se quemaría rápidamente pero no tanto como para generar una explosión. Sin embargo, actualmente se utilizan explosivos plásticos y de otros tipos que no requieren de tantos cuidados.

Las granadas tienen dos efectos, ambos buscados por el diseño. En primer lugar, el efecto mecánico, físico. La explosión crea una onda expansiva la cual, ayudada por esquirlas, puede herir o matar al enemigo, o como mínimo hacerlo desplazar unos metros. El segundo efecto, a veces más importante (y buscado por ciertos diseños) es el psicológico. La fuerte y sorpresiva detonación, el humo y el polvo generados hacen que el enemigo trate de refugiarse. Si se espera una granada, todos se esconderán o huirán; si no se la espera, existen unos segundos en los cuales los sobrevivientes estarán incapacitados, sordos y confundidos por la detonación, posiblemente tosiendo por el humo y con los ojos irritados. Todo lo cual los incapacita para el combate, permitiendo su captura mucho más fácilmente al limitar su capacidad defensiva y ofensiva.

Funcionamiento general

Las granadas de mano, como su nombre lo indican, se caracterizan por ser portátiles y fáciles de usar con una sola mano. Esto aumenta su alcance y por lo tanto su eficacia; la facilidad de uso ha sido siempre una de las prioridades en su diseño, más allá de la potencia de la masa explosiva. Sin embargo, como se verá, ha habido casos de granadas poco prácticas y difíciles, incluso peligrosas de usar.

Un soldado que sea buen lanzador de granadas puede enviar una a entre 30 y 35 metros de su posición, teniendo en cuenta que el área de daño máximo no supera generalmente los 20 metros. En realidad, el área de mayor daño de una granada es de unos 5 metros, en donde la esquirla y la onda expansiva pueden matar o herir seriamente a cualquier persona. En el resto de la distancia, el efecto es importante pero menor, solamente incapacitando por el ruido y dando lugar a heridas más o menos leves.

Todas las granadas comparten una serie de partes y mecanismos más o menos iguales, dependiendo de su tipo; los más comunes se muestran en el gráfico inferior. Las tres principales son:

  • Cuerpo: es la carcasa del artefacto, que contiene todos los mecanismos impidiendo la entrada o salida de componentes. Además, suele ser uno de los responsables de la producción de esquirlas. Puede estar constituido de diversos materiales (ver más abajo).
  • Espoleta: es la serie de mecanismos y seguros que impide el estallido de la granada hasta el momento deseado, y luego se asegura de que el artefacto estalle de la manera para la cual fue diseñado. Hay muchos tipos de espoletas, las cuales se explicarán más adelante.
  • Multiplicador y carga explosiva: para evitar accidentes y fallas, los materiales explosivos de las granadas son particularmente estables. Estos materiales no estallan por el calor, a veces ni siquiera si son puestos directamente en el fuego. Es por eso que se necesita que la granada tenga en su corazón una pequeña cantidad de material explosivo más sensible, capaz de ser encendido por los pequeños mecanismos de la espoleta.
Corte esquemático de una granada típica, la M62 estadounidense. Pueden verse señaladas las partes más importantes, cuyo funcionamiento se explicará más adelante.

Explosivos comunmente utilizados

Además de mejorarse con el tiempo el diseño y las espoletas, otro de los cambios que sufrieron las granadas fue justamente su razón de ser: el material explosivo que cargan.

La pólvora fue el primero de todos. Aunque es estable, no solamente es sensible al calor directo y al fuego sino también al rozamiento, lo cual obligaba a un uso cuidadoso. No es un explosivo muy potente; se necesitan grandes cantidades para una explosión importante, lo cual limitaba el efecto de las primeras granadas.

Algunos explosivos fueron abandonados principalmente por su inestabilidad (su tendencia a estallar con el calor o el rozamiento) o por ser muy sensibles a la humedad u otros factores ambientales, los cuales los inutilizaban. Actualmente muchas granadas se fabrican llenas de explosivos plásticos o similares, como el TNT. Para aumentar su capacidad explosiva sin hacerla más pesada y grande, a veces se combinan dos explosivos. Por ejemplo, la granada Calderón, utilizada por la Infantería de Marina española y de origen estadounidense, tiene un 60% de hexógeno, 39% de TNT y 1% de cera, totalizando 165 gramos que equivalen a 215 gramos de TNT puro.

La facilidad de moldear estos explosivos permite a la industria adaptarlas a cualquier forma que tenga la granada. Actualmente muchos artefactos de este tipo utilizan la ciclonita o hexógeno, el cual, mezclado con parafina o vaselina se convierte en uno de los primeros explosivos plásticos concebidos. Muy poderoso, fue uno de los más utilizados para sabotajes de partisanos y fuerzas de la resistencia durante la Segunda Guerra Mundial.

Clasificaciones de las granadas de mano

Por lo general, cuando más sencillo y útil es un aparato cualquiera, más variantes y modelos van apareciendo con el tiempo. El caso de las granadas no es la excepción. Con más de un siglo de historia continuada en el campo de batalla, este arma de combate ha ido acumulando todo tipo de variantes: de forma, de efectos explosivos o no explosivos, de materiales utilizados, de sistemas de ignición, etc., etc. A continuación se detallarán las clasificaciones más importantes y pertinentes, aunque pueden surgir otras al profundizar todavía más la investigación.

Dos granadas polacas del mismo modelo básico: la de la izquierda, sin metralla, es ofensiva; la de la derecha, de piña, es defensiva.

La primera gran diferenciación entre granadas es entre las explosivas y las no explosivas. Como su nombre lo dice, las primeras están rellenas con algún tipo de explosivo. Su uso es netamente de combate y están destinadas a matar o herir al enemigo. Las segundas no contienen explosivos y según lo que contengan, pueden variar de uso.

Granadas explosivas

  • granadas ofensivas: aunque pueda llevar a confusión, son las menos potentes. Pensadas para cuando el soldado está avanzando rápidamente y sin mucha protección, su radio de acción es menor. Fabricadas con cuerpos de plásticos, aluminio u hojalata, la explosión casi no causa esquirlas, que son los principales agentes causantes de heridas. Por lo tanto, estas granadas basan su efecto principalmente en incapacitar al oponente: su único efecto es la onda expansiva. Esto evita que el soldado, en un apuro o por descuido, lancen cerca la granada y quede dentro de su zona de efecto.
  • granadas defensivas: son las más potentes; el explosivo está recubierto de un cuerpo de acero u otro metal prefragmentado, que al estallar se convierte en esquirlas mortales. Se supone que el soldado utilizará estas granadas cuando se esté defendiendo y, por lo tanto, está a cubierto en su trinchera u otro lugar. Esto lo deja fuera del área de efecto de la granada, que es mayor.

La diferencia entre estos dos tipos no la hace la cantidad de material explosivo, cuyo peso y tamaño suele ser idéntico, sino en el detalle ya mencionado: el material del cual está hecha la cubierta. Las granadas ofensivas no provocan esquirlas ya que el plástico o aluminio se desintegran totalmente; las defensivas vienen con un cuerpo de metal pesado prefragmentado, diseñado para convertirse en proyectiles de gran poder destructivo. Con esto se aumenta en gran medida el radio de acción del arma y su potencial daño.

Para simplificar la fabricación y uso, actualmente se fabrican granadas ofensivas, a las cuales se les agrega una sobrecubierta metálica (a veces un simple rollo de alambre de acero grueso o en todo caso un recipiente lleno de perdigones), convirtiéndolas así en defensivas.

Granadas no explosivas

  • granadas de humo o fumígenas (con agentes químicos que al combinarse crean humos de diferente tipo). Estas granadas pueden ser tanto para cubrir una retirada o movimiento (solamente humo negro o blanco) o servir para señalar un blanco (por ejemplo, lanzando una granada de humo rojo sobre una trinchera enemiga se la marca para un bombardeo aéreo).
  • granadas de gases (lacrimógenos, etc.). De uso en las fuerzas del orden, sirven para dispersar disturbios al provocar en los individuos diversos síntomas incapacitantes, como náuseas o irritación ocular.
  • granadas de choque o cegadoras (con denominaciones variadas). Generalmente utilizadas por equipos de fuerzas especiales antiterroristas (tanto sean policiales como militares), producen una fuerte detonación que ensordece, mientras el destello simultáneo puede dejar ciego durante unos instantes a los criminales.

En este artículo no analizaremos este tipo de granadas más allá de esta clasificación, y nos concentraremos a partir de ahora en las granadas explosivas, que son las más utilizadas durante el combate terrestre.

Clasificación según forma

Utilizadas durante la Primera Guerra Mundial, las granadas de palo se popularizaron del lado alemán, el cual creó diversos modelos que fueron usados en la siguiente contienda.
  • de palo: sinónimo de las fuerzas armadas alemanas de ambas guerras, fueron utilizadas casi exclusivamente por ellas y ningún otro país. El palo que hace de mango le agregaba un gran alcance al lanzamiento, pero dificultaba su transporte, ya que las hacía más pesadas y grandes (se solían llevar en el cinturón o en las botas, pero no cabían en bolsillos ni se llevaban enganchadas de a varias como las de piña). Actualmente estas granadas no se fabrican ni utilizan, ya que fueron dejadas de lado por las de piña, esféricas o de bote.
  • esféricas: las primeras granadas tenían una forma esférica o casi esférica; esto ayudaba a su manejo y a que volaran mucho. Además, tenían la ventaja de que ruedan más y mejor. Actualmente existen ciertos modelos de este tipo; uno de los más conocidos es la Calderón, de uso en la Infantería de Marina española y en EEUU.
  • de huevo: las granadas actuales más comunes tienen la forma de un huevo grande; se combina así la facilidad de manejo con un gran alcance y deja que la granada ruede. Generalmente son ofensivas y su superficie es totalmente lisa.
  • de piña: la forma más clásica y reconocible de las granadas de mano. Similares a las de huevo, tienen la superficie acanalada de manera similar a un ananá o piña, con partes planas que sobresalen unos milímetros. Se trata de trozos de metralla pre-fragmentada, la cual se disemina más fácilmente al no absorber tanta onda expansiva. Otra de las razones para diseñarlas así, y según algunos, la más importante, es el facilitar el agarre por los soldados en toda situación, dificultando que puedan escaparse de sus manos. Aunque estas granadas no siempre tienen la forma exacta de una piña, se les da este nombre a todas las granadas cuyo cuerpo está prefragmentado de esta manera.
  • de bote o de lata: con forma de lata de conserva, eran fáciles de fabricar en tiempos de escasez de industria bélica, al adaptarse maquinaria utilizada civilmente para otros propósitos. Generalmente no tenían casi metralla y su efecto destructivo era pequeño. En la actualidad, algunas granadas de humo tienen esta forma.

Clasificación según materiales de fabricación

Un ejemplo de una granada de bote hecha de plástico.
  • De hojalata: este material barato y liviano constituye el cuerpo de muchas granadas actuales. La hojalata generalmente se cubre con pinturas especiales para evitar la oxidación, y se utilizan planchas delgadas de material. Otra opción es el uso de aluminio, que aunque es más caro no requiere un tratamiento especial de la superficie ya que su resistencia a la oxidación es mucho mayor.
  • De fundición: las granadas no requieren materiales de buena calidad ni muy resistentes; además de la hojalata esto implica el uso de hierro fundido de calidad variable. Este material es muy eficaz a la hora de crear metralla, debido a que es pesado y resistente, fragmentándose en pedazos relativamente grandes que tienen un mayor alcance y penetración. El hierro puede estar o no prefragmentado.
  • De plástico: aunque pueda parecer una innovación reciente, lo cierto es que se fabrican granadas de plástico desde finales de la Segunda Guerra Mundial, ya que este material es mucho más viejo de lo que se cree. Sin embargo, han sido pocos los países que lo han utilizado, sobresaliendo España, la cual ha tenido granadas de este tipo en servicio durante más de 30 años. Uno de los materiales plásticos más utilizados suele ser la baquelita. Los beneficios de este tipo de granadas es una fabricación más barata; sin embargo como es evidente no produce metralla ya que el plástico se desintegra totalmente a la hora de la explosión. Para lograr esto se utilizado una cobertura en donde se enrolla una espiral de alambre de acero, el cual se fragmenta.

Como curiosidad podemos mencionar también que, en la Segunda Guerra Mundial, existieron granadas hechas completamente de explosivos. Varios modelos alemanes estaban fabricado a base de nipolit, un material explosivo de consistencia sólida fuerte, del color de la madera. El nipolit era una mezcla de nitrocelulosa, nitroglicerina y PETN, RDX y aluminio en polvo. Eran tan fuerte y sólido luego de ser moldeado que no necesitaba ser encapsulado, siendo incluso resistente al agua.

Tres ejemplos de granadas hechas de nipolit (no están ilustradas a la misma escala). La de arriba es una versión de palo; la de la derecha es de huevo y la de la izquierda es de bote. Todas parecen compartir la misma espoleta de la Eierhandgranate 39.

Los alemanes usaron este material descubierto casi por accidente en varios tipos de trampas explosivas y también granadas. Algunas tenían forma de granadas de bote, pero también existieron otras con forma de palo. Las ventajas en cuanto a la potencia eran evidentes, ya que no existía ningún peso muerto: todo el cuerpo era explosivo.

Otra curiosidad que quedó en la historia son las granadas hechas de cristal grueso, que era más barato y fácil de fabricar que el hierro (necesario para otros proyectiles y los cañones). Fueron bastante utilizadas en los combates navales del siglo XVIII y XIX, utilizadas por los marineros para cubrir su asalto a otros barcos cuando los abordaban. Pero incluso en la Segunda Guerra Mundial, algunas granadas continuaron siendo fabricadas de cristal, particularmente modelos franceses y ciertos modelos fumígenos alemanes.

Clasificación según funcionamiento

Las primeras granadas de mano tenían sistemas primitivos y engorrosos para asegurar su explosión. El primero y más conocido era el de mecha: ésta estaba protegida por una tapa, la cual se quitaba y permitía su encendido antes del lanzamiento. En esta tapa solía haber alguna clase de raspador, que permitía accionar la cabeza de fósforo de la mecha. Dependiendo del largo de la mecha el intervalo entre el encendido y la explosión era mayor o menor. Su principal problema era que el sistema, además de poco seguro y lento, no era a prueba de agua; con lluvia o barro la granada se hacía inútil al no poder prenderse la mecha o al apagarse esta antes del estallido.

Este problema se solucionaba en parte usando una mecha interna, resguardada dentro de una cápsula. Este tipo de granadas tenían un seguro de transporte, para evitar ser activadas antes de su uso. Quitado ese seguro, el soldado solamente debía golpear el cuello de la granada, donde un percutor transmitía el golpe hacia la cápsula, que encendía la mecha. Otros sistemas similares, en lugar de requerir un golpe, necesitaban que, una vez sacado el seguro, el soldado agitara violentamente la granada hacia abajo.

Todos estos sistemas eran un poco engorrosos y peligrosos, y resultaron rápidamente abandonados luego del siglo XIX, aunque en algunos países perduraron más que en otros. Por ejemplo, los japoneses y soviéticos utilizaron este tipo de sistemas durante la Segunda Guerra Mundial.

Dependiendo del tipo de espoleta utilizada en la granada, se las puede clasificar en tres tipos.

  • espoleta a percusión o de inercia: de mecanismo complejo, este sistema hace estallar la granada en el momento en que esta golpea el suelo o algún otro objeto sólido que esté en su camino, después de ser lanzada.

Aunque así como se lee parece eficaz, no lo es tanto, como se ha demostrado con el tiempo y su uso. Las granadas con espoleta de percusión fueron de las primeras en usarse, tanto en la Guerra Civil Estadounidense como en la Guerra Franco-Prusiana, ambas a mediados del siglo XIX. Sin embargo, no se las usaba tanto para lanzarlas, sino en forma de minas o trampas para incautos. Con cuerpos en forma de pera, hechos de hierro fundido, en ellas se colocaban pistones, los cuales al ser golpeados funcionaban como espoletas y activaban la carga explosiva. En Europa las espoletas de percusión fueron utilizadas también por el conde Orsini, famoso anarquista del siglo XIX. Son conocidos sus muchos atentados con este tipo de granadas, en uno de los cuales se rebeló una de sus grandes desventajas. Se cuenta que en una ocasión los anarquistas arrojaron una granada en un teatro, y una de ellas cayó en la falda de una mujer, pero la espoleta a percusión no estalló porque no golpeó con suficiente fuerza un objeto duro. Las espoletas a percusión fueron usadas también en muchas minas navales, y en ellas pueden observarse esa imagen tan conocida de la esfera con muchos bastones sobresaliendo; cada uno de ellos es una espoleta, de manera que en todos los ángulos se puede producir un golpe y un estallido.

La Lafitte italiana fue la única granada con espoleta de inercia utilizada en grandes cantidades durante el siglo XX.

Como lo ilustra el caso del atentado del conde Orsini, este es un sistema potencialmente lleno de fallos. La granada puede golpear muchas veces con objetos no lo suficientemente sólidos como para activar los mecanismos de explosión: ramas, grupos de hojas, charcos de agua o barro, maleza, etc. Aunque el sistema de percusión esté bien graduado, cualquier elemento blando puede impedir su acción, neutralizando la granada.

Otra de sus desventajas es que es más cara y lenta de producir que las granadas con espoleta de tiempo. Para evitar un estallido prematuro (por ejemplo, si la granada caía de las manos del lanzador) se usó un sistema de cinta o alambre, que se desenroscaba al volar la granada unos 10 metros; a menor distancia era imposible la explosión, protegiendo así al lanzador.

En todo caso, estas granadas resultaban peligrosas también, porque el sistema de inercia seguía estando activo incluso si la granada no estallaba. Suponiendo que un soldado lanzara una y ésta golpeara una rama o cayera en un matorral, podía volver a activarse si alguien caía encima, la pisaba o la pateaba. Para evitar esto se crearon seguros de recogida, los cuales, como su nombre indica, permitían tomar la granada y desactivarla. Generalmente consistían en un sistema que, al ser girado, trababa por dentro el percutor y evitando la explosión, a menos que se volviera a girar para un nuevo lanzamiento. De todas maneras, por precaución, los manuales de uso prohibían este tipo de acciones, lo cual nos dice que posiblemente el sistema no era muy seguro.

Todos estos problemas hicieron que estos dispositivos fueran usados por muy pocos países en combate, pudiendo mencionarse a Italia en la Segunda Guerra Mundial, y más tarde España. Actualmente no se producen granadas con este tipo de espoleta.

  • espoleta a tiempo o con retardo: fueron y son las más utilizadas mundialmente, y las primeras en usarse (teniendo en cuenta las granadas a mecha externa o interna, más primitivas, mencionadas previamente). Al quitarse todos los seguros, esta espoleta enciende una pequeñísima cantidad de pólvora encerrada en un pequeño tubo. Entre tres y seis segundos más tarde (dependiendo del modelo de granada), esta mecha hace estallar el artefacto.

Como se ha mencionado antes, los primeros sistemas de tiempo eran bastante primitivos; sin embargo los actuales no dejan de lado el concepto de la mecha de pólvora. En todo caso, lo que se mejoró fue la seguridad y la facilidad de uso.

El sistema ideado y utilizado por muchas granadas de diferentes países reunía estos dos factores. La granada posee una anilla de seguridad y una palanca, que rodea la silueta del artefacto. El soldado toma con la mano de lanzamiento la granada, y presionando la palanca mete un dedo en la anilla y tira de ella. La anilla tiene soldada una pequeña varilla de metal, que asegura los mecanismos de la espoleta.

Mientras el soldado mantenga la palanca apretada, este seguro impide la explosión; de esta manera, la anilla puede quitarse y volverse a poner (una gracia de soldado que seguramente asustaría a cualquier no entendido) si se mantiene apretada la palanca. Sin embargo, al lanzarse la granada, la palanca se libera también, encendiendo la espoleta de tiempo.

Dentro del artefacto, el sistema es generalmente similar en todas las granadas de este tipo. En la cabeza de la granada (que sobresale del cuerpo), hay dos pequeñas cápsulas de material inflamable o incendiario, y una pieza metálica en forma de U o de V. Cada una de sus puntas está diseñada para impactar y encender dichas cápsulas. La anilla impide esto al trabarlas; y por eso es el primer seguro que debe ser quitado. Liberados estos detonadores, ahora la palanca es la que impide su movimiento. Cuando la granada se lanza, la palanca se suelta; se libera entonces un muelle o resorte que impulsa violentamente la pieza en V contra las cápsulas incendiarias, las cuales con su fuego encienden la mecha de pólvora que llega hasta el multiplicador, el cual hace estallar el contenido explosivo.

Este sistema de palanca es el más evolucionado y perfeccionado de todos, y es el utilizado generalmente por todas las granadas actuales, con algún que otro detalle diferente. Existen dos tipos de palancas de seguridad: las separables o las fijas. Como sus nombres lo indican, las primeras se separan al ser lanzadas o incluso pueden ser separadas manualmente como parte del proceso de lanzamiento. Las fijas están unidas a los mecanismos de la espoleta y por lo tanto quedan así hasta el momento de la explosión.

Otro sistema de espoleta a tiempo es el de tirafrictor, utilizado por las granadas de palo y de huevo alemanas de la Segunda Guerra Mundial (ver más adelante). En este caso la mecha se enciende al tirar fuertemente de un cordón en cuyo extremo hay un alambre rugoso que, al entrar en contacto con una superficie de fósforo, da fuego a la mecha.

Este sistema nunca fue muy utilizado a nivel mundial, y fue abandonado luego de la derrota alemana (este país fue el que más lo usó). Esto se debía a una gran desventaja de seguridad. La mecha comenzaba a arder mientras el soldado tenía la granada en la mano, lo cual llevaba a varias posibilidades peligrosas. En el caso de un defecto de fabricación, deterioro de material o una distracción, el artefacto podía explotar matando a su usuario. Esto, por motivos mecánicos, no puede suceder con una granada con seguro de palanca como las ya descriptas.

Como se ve a veces en las películas y otras obras de ficción, las granadas con espoleta de tiempo pueden teóricamente ser devueltas al enemigo, si son ubicadas rápidamente por un soldado con mucha sangre fría. Sin embargo, aunque esta técnica es posible y hay relatos históricos que documentan situaciones en donde ha pasado, no es lo más común. Por lo general, instintivamente el soldado tiende a protegerse o a alejarse de ella.

Corte de una granada EXPAL, española, una de las pocas que usaba espoleta mixta, de retardo y de inercia.
  • espoleta mixta: este tipo de granadas tienen dos espoletas, una de tiempo y otra de inercia. Este hace más difícil y cara la producción, pero aumenta la versatilidad del artefacto, además de su seguridad. Solamente España tuvo en servicio una granada de este tipo, la EXPAL; en ella se podía anular a voluntad la espoleta de percusión, dejando activo solamente la de tiempo. Esta granada tenía un sistema de autodestrucción, en caso de que fallaran ambos sistemas. Sin embargo se produjeron muchos accidentes que llevaron a que se abandonara su uso y producción.

Granadas de fortuna

Durante el siglo XX, debido a la necesidad siempre grande (y no siempre satisfecha) de granadas y sistemas explosivos similares, se han fabricado las granadas de fortuna.

Estos artefactos no reglamentarios son creados artesanalmente en el momento del combate, y por lo tanto están fuera de muchas clasificaciones. Generalmente, se toma el explosivo de otras fuentes, se le agrega un sistema de detonación y poco más. Cada una de las unidades creadas suele ser diferente, ya que son improvisaciones hechas sobre la marcha.

Tal vez el caso más ilustrativo sean las granadas de raqueta o granadas de pala, utilizadas ampliamente por todos los bandos en la Primera Guerra Mundial. Cuando comenzó la guerra todos los contendientes creían poder terminarla en pocos meses; sin embargo se estancó en las trincheras y pronto descubrieron que en sus inventarios no existían prácticamente granadas ni bombas de mano. Mientras la industria bélica trataba de llenar el hueco, los soldados comenzaron a experimentar e improvisar.

Al principio lanzaban simplemente bolsas llenas de explosivos o cartuchos atados, pero su tamaño y forma irregular los hacía difíciles de lanzar, limitando su alcance. Y si se reducía el peso para facilitar el manejo, generalmente se perdía capacidad destructiva.

En ese momento surgió la idea de atar los explosivos sueltos y empaquetarlos en una bolsa de papel fuerte o tela. Este paquete era provisto de una mecha (regulada según el caso), y el conjunto era atado a una tabla de madera cortada en forma de pala pequeña o raqueta de tenis. De esta manera el improvisado artilugio ganaba en precisión y alcance, similar a lo que sucedía con las granadas de palo. Su uso, sin embargo, fue discontinuado al llegar al frente las granadas de mano modernas.

También se pueden considerar como granadas de fortuna a las que frecuentemente eran producidas por grupos de partisanos o de la resistencia, en improvisadas fábricas de armas. Estos modelos, aunque eran hechos en serie y con ciertos controles, no llegaban a ser reglamentarios ya que ningún gobierno los tenía incluidos en su inventario. Un caso conocido son las realizadas en talleres metalúrgicos civiles durante la Guerra Civil Española (1936-1939) o los que crearon los partisanos rusos durante la Segunda Guerra Mundial.

Granadas de mano más utilizadas en las Guerras Mundiales

Las granadas de palo son un ícono de las fuerzas armadas alemanes en la Segunda Guerra Mundial, y como tales aparecen en grandes cantidades de fotografías y material documental.

Muchas armas han sido tan famosas que ingresaron en la historia y son íconos incluso para el público en general, poco familiarizado con temas militares. Con las granadas no siempre es así, ya que son armas poco conocidas. Sin embargo, muchas de ellas se han hecho famosas y han permanecido vivas en películas de la época.

Ambas Guerras Mundiales han visto un uso muy extendido de tipos cada vez más sofisticados de granadas de mano, algunas de las cuales son todavía ejemplos para otros diseños. Las desglosamos aquí por país.

Alemania

Tal vez inspirada en las granadas de raqueta, y pensando en el gran alcance que tenían, los alemanes crearon en la Primera Guerra Mundial una de las granadas más conocidas del mundo: la granada de palo. Se hicieron famosos por su uso generalizado, ya que fueron los únicos en utilizarla ampliamente.

Las granadas de palo comenzaron a entrar en servicio en 1915 y continuaron mejorándose durante todos los años de la contienda, hasta que en 1917 surgió un modelo definitivo. En todas se usaba un sistema de fricción, bastante poco común fuera de Alemania, pero que este país supo aprovechar. Este sistema implicaba tirar con fuerza de un cordón (sistema conocido como tirafrictor); en los primeros modelos este cordón sobresalía del mango poco antes del final. Sin embargo se descubrió como algo muy peligroso: muchas veces el soldado enganchaba el cable y activaba la granada accidentalmente, causando graves heridas o la muerte.

Corregido esto, los siguientes modelos de granadas de palo tenía el mango totalmente hueco, con el cordón recorriendolo y saliendo por la parte de abajo y protegido con una tapa a rosca. Una vez quitada la tapa, el soldado tomaba una pequeña bola de porcelana en la que terminaba el cordón, y tiraba de él con fuerza; esto movía una varilla de acero que por fricción encendía la mecha de cinco segundos.

Este modelo de granada, conocido como Stiel­handgranate 24 ó StiGr-24, fue la granada standard de Alemania durante el período de entreguerras y la Segunda Guerra Mundial. Dio nombre a las granadas de palo, o como la llamaban los británicos, pisapapas, debido a su silueta tan distintiva. Se las transportaba en cajas alargadas llenas de paja, con las espoletas separadas para mayor seguridad; tanto es así que en todas las cabezas explosivas estaba escrito «Antes de usar insertar detonador».

Las granadas de palo, usadas casi exclusivamente por los alemanes, tenían varias ventajas, particularmente su mayor alcance. El efecto de rotación hacía más fácil que el soldado alcanzara distancias mayores, y además la forma alargada impedía, a veces, que la granada rodara de vuelta en terreno elevado o urbano. Un desarrollo particular ideado por los soldados era adosar seis granadas más (sin sus mangos) a una granada central; este paquete de explosivos servía como cargas de demolición improvisadas, contra tanques o estructuras, y era imposible de armar con otro tipo de granada.

Las desventajas de esta granada eran un mayor peso y tamaño, lo cual la había difícil de llevar en grandes cantidades. Era común que estas granadas, independientemente del modelo, se llevaran en las cañas de las botas o sujetas al cinturón; así se las puede ver en gran cantidad de fotografías.

La StiGr-24 fue el modelo más numeroso y clásico de la Segunda Guerra Mundial, y era también la preferida de todos ya que permitía lanzamientos más largos y más precisos. A partir de este modelo, se fueron haciendo cambios menores para lograr una granada más ligera y por lo tanto, más fácil de fabricar y menos cara. Una de estas mejoras fue la creación de una carcasa postiza con material prefragmentado, o Splitterring, adoptada en 1942. Hubo modelos de granadas de palo de humo, identificable por una banda blanca o (más adelante) por surcos en el mango para poder diferenciarla en la oscuridad. Como en el clima muy frío la StiGr-24 a veces no estallaba, se diseñó una variante, marcada con una K, para su uso en Rusia, que tenía una mezcla diferente de pólvora como iniciador.

En 1939 se comenzó a fabricar una nueva versión, más larga y con mayor carga explosiva, que no tuvo tanto uso. En 1943 se creó otra variante más, la StiGr-43, con el mango macizo en lugar de hueco, y con el iniciador en la parte superior de la cabeza. Esta diferencia aparentemente menor, no lo era: significaba que la cabeza explosiva podía ser desmontada del palo y ser usada de manera más convencional, y también como trampa explosiva.

Sin embargo, los problemas del tamaño y peso eran considerables para cierto tipo de tropa, como los paracaidístas y los tripulantes de los vehículos blindados. Por eso se diseñó una granada más similar a las utilizadas por otra países, la Eierhandgranate 39, de forma de huevo. Portátil y de pequeño tamaño, sufrió algunos cambios de espoleta durante la guerra. Como sucedió con la StiGr-24, al principio se la pensó solamente como ofensiva, pero luego se diseñaron y fabricaron envolturas postizas, algunas prefragmentadas, para hacerlas defensivas.

La Eihandgranate 39 (literalmente, granada de mano de huevo) entró en producción en 1939, cuando los problemas de tamaño y peso de las granadas de palo ya eran bien conocidos.

Esta granada y la StiGr-43 compartían el mismo tipo de espoleta removible, enroscable en la parte superior de la carga explosiva. Esta espoleta era del tipo tirafrictor; para activarla, se resenroscaba una tapa de la cual caía dicho cordón, el cual al ser tirado con fuerza activaba la granada. El color de la tapa indicaba el tiempo de retardo de la espoleta y también su tipo. Por lo general estas granadas tenían un retardo de 4 segundos. Sin embargo se las podía usar inteligentemente como trampas explosivas: poniendo un retardo de menos segundos, una granada abandonada y encontrada por el enemigo muchas veces se convertía en una sentencia de muerte. El soldado la activaba pensando en usarla, pero le estallaba en las manos a veces de manera instantánea. Estas espoletas ultrarrápidas también permitían usarlas en puertas u otros escenarios urbanos: con el cordón atado a ella, al entrar los soldados enemigos (generalmente pateando la puerta), la granada estallaba.

Un detalle curioso es que el retardo generalmente utilizado en la espoletas alemanas bajó de 5,5 segundos en la Gran Guerra a 4,5 segundos en la Segunda Guerra Mundial.

Gran Bretaña

Como sucedió con otras armas de infantería, este país participó con un solo modelo de granada en ambas Guerras Mundiales: la Mills, ejemplo para muchas otras armas similares debido a su simplicidad y otros aspectos de uso y fabricación. Con una característica forma de piña y cuerpo de fundición, prefragmentado, tenía un sistema de retardo muy seguro.

Corte de una granada Mills sin explosivo en su interior.

Diseñada originalmente por Williams Mills en 1915, en ese año fue aceptada para su uso en el Ejército Británico con el nombre Nº 5. Sin embargo, no quedó allí y fue constantemente modificada y mejorada. Buscando aumentar su alcance, el modelo Nº 23 se creó con una base especial que se ajustaba a la boca de un fusil; esto permitía lanzarla a 150 metros, aunque en este caso posiblemente su precisión no era muy buena.

Luego se diseñó la Nº 36, que era similar a la Nº23 pero con el dispositivo lanzafusil removible. Una subvariante de esta, la 36M, fue la versión definitiva de la Gran Guerra, a prueba de agua para poder ser usada en ambientes húmedos y cálidos. Para el final de la guerra, tanto la Nº 5 como la Nº 23 fueron declaradas obsoletas; el Nº 36 siguió ese camino en 1932, quedando en servicio la Nº 36M.

La Mills tiene un diseño clásico de piña, con el detonador en el centro y la espoleta a tiempo asegurada con una anilla. Era una granada defensiva, y por lo tanto muy potente. Tenía un retardo de 7 segundos; en la Gran Guerra esto no causó problemas, pero en 1940 la experiencia de guerra en Francia demostró a los ingleses que aquella forma de combate era diferente. A partir de entonces la Mills tuvo un retardo de 4 segundos.

Luego de la guerra la Mills continuó en producción en el Reino Unido hasta 1972, convirtiéndose en una de las granadas más fabricadas, con 70 millones de unidades en servicio durante todo el siglo. En ese año la 36M MkI fue reemplazada oficialmente por la granada L2, pero continuó siendo fabricada y usada en ciertas partes del mundo con influencia inglesa, como India y Pakistán, donde se la fabricó hasta la década de 1980.

Estados Unidos

En la Primera Guerra Mundial los estadounidenses no fueron muy preparados y estuvieron en combate poco tiempo antes de finalizar el conflicto. Sin embargo, varias décadas después tenían lista una granada muy eficiente, similar a la Mills británica y tan icónica como ella: el modelo MK2 (o MK-II). Defensiva, con forma de piña y detonador a tiempo, tenía la particularidad de que las espoletas se podían desmontar, llevándolas aparte y montándolas solamente cuando la acción era inminente. Esto aumentaba considerablemente su seguridad.

Existieron diferentes variantes de esta granada, teniendo en cuenta el tipo de explosivo. Como el TNT a veces destruía demasiado el cuerpo de la granada (vaporizando las esquirlas), se lo usaba como relleno en algunos modelos; en otros se usaba pólvora negra. Con un peso de 600 gramos cada una y una carga explosiva de 57 gramos de TNT, era una granada clásica de la época, relativamente pesada pero efectiva.

Uno de los problemas que tenía era que, en ambientes de mucha vegetación como las junglas del Pacífico, no era raro que los soldados, al llevarlas montadas sobre el chaleco, fueran víctimas de sus propias armas cuando una rama enganchaba la anilla de seguridad. En la película La Delgada Línea Roja puede verse un caso de este tipo, que aparentemente no era poco común, lo cual llevó más adelante a pensar en una forma más segura de uso (ver más abajo).

A pesar de esto la granada siguió en servicio durante toda la guerra. Las enormes cantidades producidas permitieron que la tropa continuara utilizándolas durante la guerra de Corea e incluso la de Vietnam. A pesar de que otros modelos más nuevos la habían reemplazado ya oficialmente en el inventario, seguía siendo útil y válida en combate. La US Navy fue la última rama de las FFAA estadounidenses en usarlas, y fue reemplazada por los modelos M67 y M61.

Unión Soviética

En la Segunda Guerra Mundial, la Unión Soviética utilizó varios modelos, dos se destacaron como característicos.

Uno era la versión rusa de la granada de palo alemana, pero utilizando un cuerpo de fundición de hierro prefragmentado, no liso, de bote, como el modelo alemán.

El otro modelo era una granada de piña con un sistema de espoleta similar al de la Mills británica. Sin embargo, estaba construida a la manera estadounidense, con el detonador desmontable, en la parte superior del cuerpo, sobresaliendo bastante en este caso. Esta granada, para la cual se fabricaron y usaron diferentes espoletas, fue utilizada en la Guerra Civil Española por el bando republicano, y entró a servir en la URSS en la década de 1930.

Medía 12,4 cm de alto y 5,5 de diámetro, pesaba unos 600 gramos, de los cuales solamente 21 eran el explosivo, TNT. La espoleta generalmente estaba graduada a los 4 segundos.

China y Japón

Ambos países, aunque enfrentados, tomaron el concepto de la granada de palo alemana y la utilizaron. En el caso chino, posiblemente se debió a que los alemanes fueron asesores militares del gobierno nacionalista por un tiempo; en el caso japonés tal vez se debió a la influencia militar y el intercambio producido entre ambos países en ciertas materias.

Curiosamente, los chinos comunistas al tomar control del país continuaron fabricando este tipo de armamento (la granada Tipo 67), el cual luego fue entregados a los soldados comunistas de Vietnam del Norte y el Vietcong. De esta manera la granada de palo fue a luchar en Vietnam, nuevamente contra tropas estadounidenses.

Italia

Atrasada en investigación bélica y en organización productiva, no es raro saber que Italia participó de la Segunda Guerra Mundial con granadas costosas y poco efectivas. Los cuatro modelos principales eran granadas de percusión, poco seguras, y solamente ofensivas, con un cuerpo delgado de aluminio u hojalata.

La pequeña granada Oto.

La más potente fue la Lafitte; del tipo bote o de lata, tenía una gran cantidad de explosivos al comparársela con granadas contemporáneas. En ambientes cerrados como los del combate urbano, esta gran onda expansiva era devastadora. Sin embargo al ser solamente ofensiva su utilidad en ciertos casos era menor. Como era muy grande, era difícil de empuñar y usar. Para proteger al lanzador, su sistema de detonación tenía un seguro de distancia.

Así como utilizaron la granada más grande, también los italianos tenían la más pequeña, llama Oto. En este caso el problema era el opuesto: era fácil de usar y los soldados podían llevar muchas debido al escaso tamaño, pero su efectividad disminuía. Los italianos aparentemente nunca pensaron o no pudieron desarrollar una granada a mitad de camino entre estas dos.

En este sentido se puede mencionar a la granada Breda, de color naranja y conocida justamente como naranjita por los soldados. Fue la tercera más usada después de la Lafitte y la Oto; más potente que esta última, fue muy popular junto con la cuarta granada italiana, la SRCM.

Sin embargo, los modelos italianos se caracterizaban por ser caros y de complicada fabricación, sin tener una gran ventaja con los modelos del enemigo (y a veces ni siquiera siendo igual de buena). Estos modelos no prosperaron luego del armisticio.

La granada Lafitte fue una de las más usadas por los italianos en la Segunda Guerra Mundial. Aquí puede verse claramente el sistema de seguridad de distancia y la anilla para activarla antes del lanzamiento.

Desarrollo posterior

Como ya hemos dicho antes, tres principales factores son los que definen todos los diseños de granadas: efectividad, seguridad y facilidad de uso.

De ellos, con el tiempo todos han logrado un grado bastante alto, aunque en algunos casos la facilidad de uso estuvo bastante relegada.

Terminada la Segunda Guerra Mundial muchos tipos de granada no volvieron a producirse nunca más, o lo hicieron solamente en casos muy aislados. Tal es el caso de las granadas de palo y las granadas con espoleta de inercia, ya mencionados. Los diseños se encuadraron entonces en granadas con espoletas de tiempo simples y principalmente seguras.

Una granada estadounidense modelo M26A1. Copiada por muchos países, en otros se producen modelos muy similares o bajo licencia. Obsérvese el sistema de seguridad que mantiene sujeta la palanca de la espoleta; aunque la anilla sea removida por accidente, la granada no estallará hasta que este sistema sea removido también.

En este sentido vale comentar el caso de las granadas M67 estadounidense, en la cual se aplicaron algunas lecciones de seguridad aprendidas en la Segunda Guerra Mundial. Como ya hemos mencionado, no eran raros los casos en los que el soldado podía morir por una casualidad. Las tropas estadounidenses llevaban sus granadas enganchadas en el frente de la ropa o en los soportes de las mochilas. En ciertos casos, la anilla de seguridad (sobredimensionada para su uso en todo momento) se enganchaba en la vegetación. El soldado no tenía generalmente tiempo de quitarla; al soltarse automáticamente la palanca no había forma de detener la espoleta. Esto llevó a muchos accidentes con un arma que se consideraba a prueba de accidentes.

La solución, sencilla, puede verse en la fotografía. Se agregó una pieza de alambre que se enrosca firmemente en la base de la espoleta, la cual mantiene presionada la palanca. El soldado ahora debe tirar de la anilla y luego quitar dicho seguro de la palanca, impidiendo que el enganche accidental de la anilla ocasione su muerte o la de sus compañeros. Como puede verse en este caso, la facilidad de uso se reciente apenas un poco en aras de mayor seguridad.

Actualmente muchos países compran o fabrican granadas de otros países, con las debidas licencias comerciales. Sin embargo siguen existiendo muchos tipos de granadas para diferentes usos y basadas en diferentes experiencias, y se continúa experimentando con ciertos conceptos para mejorarlas o darles otros usos.

Modelos experimentales

Ha habido y continúan existiendo ciertos modelos de granadas de mano para otros usos. Uno de ellos es la granada con paracaídas, diseñada para contrarrestar vehículos blindados en su parte más débil: el techo. Estas granadas teóricamente son lanzadas hacia arriba y aterrizan suavemente, sin rebotes, en la parte alta de los vehículos. En la Segunda Guerra Mundial lo que el soldado trataba de hacer era introducirlas por alguna rendija o apertura; pero actualmente los vehículos blindados están todos cerrados para evitar estas maniobras. Este tipo de granada viene experimentándose desde hace un buen tiempo, y no ha demostrado buenos resultados.

Otra idea para atacar blindados la dan las granadas de carga hueca, que pretenden aprovechar el ya conocido efecto de este tipo de cabezas de combate. En este caso el problema es lograr que la granada golpee el blanco de frente, con la cabeza hueca debidamente orientada. Para ello se han intentado varias soluciones, una de ellas pudiendo ser el paracaídas, y otra las aletas estabilizadoras. Sin embargo, durante sus varios años de estudio (incluso aparentemente durante la Segunda Guerra Mundial) no se han logrado buenos resultados.

Un tipo de granada que aparentemente sí se ha desarrollado exitosamente son las granadas contra submarinistas, diseñadas para estallar bajo el agua. Como cargas de profundidad en miniatura, son del tamaño de una granada convencional, y tienen una espoleta de presión, graduable. Al lanzar o dejar caer el artefacto, este estalla al alcanzar la profundidad determinada. Este tipo de granadas son particularmente útiles al custodiar instalaciones portuarias en donde se preveen ataques anfibios o de comandos, por ejemplo.

Tecnología stealth / furtividad al radar

La aparición del radar como instrumento de localización de aviones en vuelo durante la Segunda Guerra Mundial redefinió las reglas de la guerra aérea. Como demostraron los cazas británicos, este sistema permite que una fuerza pequeña pero bien coordinada haga frente a fuerzas muy superiores en número. A partir de este momento los ataques aéreos enemigos podían ser detectados con la suficiente velocidad como para que ninguno fuera completamente sorpresivo.

Durante mucho tiempo, los sistemas de radares siguieron evolucionando y las modernas tecnologías apuntan a su bloqueo: los aparatos electrónicos permiten producir «jamming«, interferencia en las ondas de radio que dan datos falsos. Ya en la época de la Segunda Guerra Mundial, se utilizaban tiras de papel aluminio para confundir a los radares enemigos, generando ecos radar falsos, además de otras técnicas más sofisticadas.

La doctrina aérea sigue siendo la misma que la definida en esa guerra mundial: lo principal es evitar la detección. Volar bajo comienza a ser una constante para cualquier piloto de ataque, e incluso muchos aviones de ataque son diseñados acorde con esta misión.

Sin embargo, luego de aproximadamente 50 años del invento del radar, las cosas cambiaron rápidamente. Comenzaron a correr rumores de que la USAF escondía planes secretos de aviones «invisibles al radar». Estos rumores fueron rápidamente acallados, pero luego demostraron ser ciertos, saliendo estos aparatos a la luz pública. Se trataba del F-117A y el B-2. Ambos con características muy extrañas para la concepción regular de una aeronave, despertaron la curiosidad de muchos, entendidos o no en la materia. ¿Eran realmente «invisibles al radar»? ¿Qué clase de tecnología les permitiría esto?

¿Qué es la furtividad?

En primer lugar, conviene explicar qué no es. Cuando comenzaron a aparecer los rumores sobre los nuevos aviones estadounidenses, la prensa especializada, alentada por fabricantes y el mismo gobierno, acuñaron la frase «cazas invisibles». Fue así que legos y entendidos leyeron constantemente la expresión, y todo el mundo terminó creyendo a pies juntillas lo que significaba: que estos aviones eran totalmente imposibles de detectar.

La frase en realidad contenía dos grandes confusiones: en primer lugar, ninguno de los aviones diseñados era un caza. En segundo lugar, y mucho más importante, confundía el concepto de stealth (en inglés, furtivo, es decir, algo que se hace con sigilo y de manera oculta) con el concepto de invisibilidad, es decir, la capacidad de hacerse no visible, de pasar totalmente desapercibido. Esta diferencia de palabras, en castellano al menos, parece ser un grave error de traducción, ya que los medios estadounidenses nunca hablaron de aparatos invisibles, sino literalmente de stealth fighters.

Durante mucho tiempo, hacia finales de ladécada de 1980 se habló del hipotético caza invisible F-19. Revistas especializadas y de divulgación, entre otros medios, llegaron a inventar el diseño aproximado de un aparato que realmente no existió nunca, y que terminó siendo el F-117 Nighthawk, que tiene un aspecto completamente diferente. Incluso existió un videojuego que pretendía emular el pilotaje de ese aparato inexistente. Todo esto alimentó la fantasía de que se trataba de aviones realmente «invisibles».

En el mundo castellano parlante entonces, esto llevó a la prensa, especializada o no, a hablar demasiado sobre posibles aviones con camuflajes activos, que como camaleones se ocultarían en las nubes. También se habló mucho sobre cómo se lograron un avión realmente invisible al radar.

Con el tiempo, al aparecer los estos aparatos, se aprendió más sobre la realidad, y aquella idea de la invisibilidad fue abandonada por la prensa especializada. Se recuperó entonces el concepto de furtividad: un avión que se oculta de alguna manera, pero que no es totalmente indetectable. Es por eso que ahora muchas personas, poco entendidas en la materia, continúan hablando de aviones invisibles al radar, no conscientes del error que se dio en el primer momento.

¿Qué es, entonces, la furtividad? Podemos definirla como un concepto que engloba varios aspectos, todos los cuales apuntan a dificultar la detección del avión, evitando así ser atacado y permitiendo realizar sus misiones de manera más eficiente y con menos riesgo de ser derribado. El concepto de furtividad busca crear aviones lo menos visibles posibles en todos los tipos de sensores, ya sean ópticos, electrónicos o de calor.

Dentro del concepto de furtividad, el más importante según la doctrina aérea y el desarrollo de la tecnología es la furtividad ante el radar. Este aspecto muchas veces se ha «comido» a todo el concepto de furtividad, de manera que es importante recalcar que, aunque es la parte más relevante y famosa, no lo es todo.

Pasemos entonces a comprender mejor esta parte del concepto de furtividad, que es la que ha creado aquella confusión entre invisibilidad y sigilo.

¿Cómo funciona un radar?

Para comprender cómo una aeronave, o cualquier otro aparato, puede volverse invisible al radar, es necesario primero entender cómo funciona este sistema de detección.

El radar emite ondas de radio en determinados rangos de frecuencia. Las ondas de radio se transmiten por el aire a una gran velocidad y al chocar con un objeto sólido, regresan como un eco, de manera similar a como sucede con el sonido. Pero a diferencia del sonido, resulta generalmente más fácil medir ese eco con aparatos especializados. Midiendo la intensidad de ese eco y el tiempo que tardó en regresar la onda, se puede determinar el tamaño del objeto y su distancia; el seguimiento continuo permite también detectar su rumbo (los radares más avanzados en la actualidad permiten saber también la velocidad del aparato detectado).

Hay muchos tipos de radar, dependiendo de su forma, tamaño, sofisticación y tipo de bandas (rangos de frecuencia) que utilizan. Basta decir aquí, para resumir, que cada uno tiene sus particularidades, virtudes y defectos.

La esencia de la furtividad al radar es intentar hacer que las ondas electromagnéticas no retornen al emisor, sino que sean absorbidas por la forma, estructura o materiales del avión, o que sean reflejadas hacia otras partes. En este sentido debemos detallar el concepto del RCS o Radar Cross Section (Sección de cruce radar).

La fuerza de las emisiones que regresan al radar determinará a qué distancia comenzará a aparecer en la pantalla el objetivo, y qué tan visible es para este sensor. A mayor RCS, más detectable es un avión.

El tamaño de la imagen del blanco en la pantalla del radar está directamente relacionado con el RCS. La medición de esta variable es algo bastante complejo, ya que involucra cuestiones avanzadas de geometría y otras disciplinas. El RCS depende tanto del radar como de la forma del objeto, de manera que la comparación también es compleja.

El RCS se mide en metros cuadrados o en metros cuadrados decibel. Sin embargo, no se trata de metros cuadrados convencionales, medibles en una superficie de dos dimensiones. El RCS se mide con respecto a objetos teóricos, en este caso una esfera de aluminio. Por ejemplo, una esfera de este material que tenga un metro cuadrado en su sección media (es decir, un diámetro de 1,13 metros) tendrá un RCS de un metro cuadrado.

Teóricamente, a mayor diámetro de la esfera y mayor superficie en su sección media, mayor será el RCS. Se utiliza la esfera porque es el único objeto que, al no tener caras, refleja siempre la misma cantidad de energía desde y hacia todas partes. Esto es, entonces, una medida totalmente teórica, estimada por el diseño y testeada en laboratorios, pero casi imposible de tener en cuenta fuera de modelos teóricos, ya que las variables son muchas.

Claro que los aviones no son esféricos, y aquí comienza justamente la parte de diseño de un avión furtivo al radar. Si tomáramos una placa lisa de aluminio de 1m2 (ya no una esfera) y la pusiéramos perpendicular al haz de un radar, el RCS sería de 14.000 m2. Al ir rotando e inclinando la placa, el RCS disminuirá, ya que la superficie golpeada por las ondas electromagnéticas es menor y al mismo tiempo, es reflejada hacia otras partes.

Es por eso que, como se verá más adelante, la forma que tenga el avión influirá mucho en el RCS que posea. Sin embargo, el tamaño de un avión no está directamente relacionado con su RCS; de hecho es posible que un enorme avión tenga una RCS muy baja, como sucede con el B-2, por ejemplo. Muchos aviones actuales tienen un RCS comparable al de pájaros o insectos. Se dice que un B-2 tiene un RCS comparable a una canica de aluminio, algo similar a la del F-22 y el F-117 (aunque este, con una tecnología más antigua, se dice que es menos furtivo). Mientras que el B-1 tiene el RCS de una esfera de un metro de diámetro, el gigantesco B-52, diseñado sin ningún tipo de tecnología furtiva, tiene un RCS de 52 metros.

Como se ha dicho antes, estos valores dependen mucho del avión, del radar y de otras muchas variables, y son solamente un factor teórico. Los fabricantes y usuarios de estos aparatos nunca dan datos precisos sobre sus pruebas de laboratorio, y suelen utilizar comparaciones como la de la canica o los insectos para dar una idea vaga del alcance de su tecnología, sin revelar información detallada.

Tecnologías y tácticas anti-radar

Durante mucho tiempo, los sistemas de radares siguieron evolucionando y las modernas tecnologías apuntaron a varias maneras de evitar la detección por radar.

Aunque se trata de una demostración aérea, los aviones modernos intentan estos acercamientos al objetivo muchas veces en combate: a ras del suelo pueden evitar a ciertos radares.

La primera fue el vuelo bajo. Por las características del radar basado en tierra, que apunta en ángulo hacia el cielo, los aviones podían intentar pasar desapercibidos al pegarse al contorno del suelo. Estas maniobras, realizadas con aviones de hélice, eran relativamente fáciles; pero al llegar la época del reactor se requería de constante entrenamiento, de aviones diseñados con este propósito y de pilotos muy buenos. Los peligros eran muchos, incluso en condiciones perfectas: pájaros que pudieran destruir los motores o la cabina, líneas eléctricas, árboles, niebla que tapara el terreno, etc.

Los aviones a hélice son muy maniobrables y tienen una velocidad mínima relativamente reducida. Los reactores no cuentan con esas ventajas: sus giros no son tan cerrados y pueden entrar en pérdida fácilmente. A 30 metros de altura, o menos, un pequeño error con un reactor puede ser un certificado de muerte. Es por eso que durante mucho tiempo las fuerzas aéreas de todo el mundo perdían, año tras año, aviones y valiosos pilotos en entrenamientos de este tipo.

Con el surgimiento de los radares aerotransportados, las tácticas de vuelo rasante continuaron funcionando. Al igual que los radares de tierra, que tienen puntos ciegos cerca del suelo, los primeros radares de los aviones miraban hacia adelante y apenas hacia abajo. Esto hacía que en muchas condiciones ni siquiera entraran en contacto con las ondas del radar. Y en los otros casos, los pilotos lograban enmascararse bien con el terreno: las ondas del radar rebotaban de tal manera que no podían distinguir el avión del suelo.

Por varias décadas estas técnicas fueron muy practicadas y utilizadas, y solían funcionar muy bien. Sin embargo, además de peligrosas, como ya se ha mencionado, le restaban eficacia a los ataques. Para cumplir su tarea, los aviones deben volar alto: los bombarderos y aviones de ataque a tierra deben ver sus objetivos desde lejos para apuntar mejor, y los cazas deben volar alto para tener mejor visibilidad y no ser vulnerables. Por otra parte, el vuelo a baja altura hace que se consuma más combustible, porque el aire es más denso y produce mayor resistencia al avance, lo que obliga a poner más potencia al motor.

Durante los años inmediatamente posteriores a la Segunda Guerra Mundial, muchos aviones no contaban con radares, o estos eran muy primitivos. Esto hacía que estas técnicas funcionaran; pero con el tiempo fueron apareciendo mejores radares y el peligro de la intercepción ya no venía solamente de radares que controlaran desde tierra a un grupo de cazas, sino también de patrullas aéreas que detectaran al intruso con sus propios radares.

El desarrollo de la tecnología radar llevó a la creación de aparatos de guerra electrónica. Este tipo de dispositivos permiten producir jamming o interferencia en las ondas de radio, que dan datos falsos. Esta interferencia puede intentar anular las lecturas del oponente, saturando de señales sus sensores, o también aprovechar las emisiones de radar para devolver un eco falso. Al ser un sistema de detección activo, el radar del interceptor puede ser leído por el avión intruso, calculando y procesando en décimas de segundo la mejor manera de engañarlo.

Se fue creando así una competencia similar a la entablada por los cazas nocturnos ingleses y alemanes en la Segunda Guerra Mundial, aunque obviamente más distendida ya que no había una guerra de por medio. Cada país o bloque (en este caso la OTAN y el Pacto de Varsovia) creaban radares más potentes y complejos, más difíciles de interferir, que a su vez eran contrarrestados por dispositivos más avanzados.

Esto llevó a nuevos avances, como la creación de radares que pudieran distinguir a un blanco volando muy cerca del suelo (conocidos como look-down/shoot-down) que tanto promocionaron los soviéticos en su MiG-29. Se crearon también aviones superespecializados, de vigilancia y control aéreo, que montan sobre su fuselaje enormes discos giratorios que albergan radares capaces de controlar decenas de contactos, tanto amigos como enemigos, e incluso vigilar lo que sucede en el suelo.

Por otra parte, los radares se fueron haciendo más y más complejos y pequeños, integrándose en los misiles antiaéreos tanto lanzados desde aire como desde tierra. Estos misiles podían tanto buscar blancos por su cuenta o recibir información desde el radar del avión lanzador o de otros aviones. Al miniaturizarse y agregarse opciones, los radares se hacían constantemente más y más difíciles de evitar.

Las bengalas son contramedidas que se lanzan apenas el piloto detecta el misil, y justo antes de hacer un brusco cambio de rumbo. La idea es que el misil «enganche» la señal de la bengala y deje de perseguir al avión. Sin embargo, así como mejoran las bengalas, mejoran los sensores infrarrojos del misil y del avión agresor.

Además del vuelo bajo y del jamming, los aviones continuaban utilizando tecnología realmente muy sencilla, como los chaffs, creados durante la Segunda Guerra Mundial. Estas tiras de aluminio ciegan al aparato, al hacer que las ondas de radio reboten hacia todas partes mientras caen. Por lo general los aviones más modernos incorporan un alertador de radar, es decir, un aparato que detecta cuando un radar está registrando el área general por donde el avión está pasando, y cuando ese radar se ha acerrojado sobre él (es decir, está enfocado y siguiéndolo, preparando un ataque de algún tipo). Cuando el piloto se veía en peligro (particularmente cuando detectaba el lanzamiento de un misil), además de hacer un cambio brusco de rumbo, lanzaba señuelos tendientes a confundirlo: los chaffs hacían lo suyo con el radar, y las bengalas emitían luz y calor para atraer la atención de los misiles dirigidos por calor.

Los chaffs, sin embargo, tienen una desventaja: funcionan solamente si el ancho de las tiras de aluminio se corresponden con el ancho de la onda del radar utilizado. Por su parte, los radares, al ir modernizándose, fueron desarrollando maneras de evitar este tipo de estrategias, por ejemplo, usando bruscos saltos de frecuencia. Variando aleatoriamente la frecuencia de las emisiones, engañaban a los aparatos de guerra electrónica, que contestaban en una frecuencia que había sido abandonada.

Durante los años de la Guerra Fría, los radares y los dispositivos destinados a engañarlos corrieron una carrera aparte, cada vez más sofisticada, que buscaba lograr el aparato perfecto. No es raro entonces que actualmente los sensores y las computadoras de tiro de los aviones modernos representen un enorme porcentaje del precio total de una aeronave.

Furtividad: un concepto complejo

Como ya explicamos, el concepto de la furtividad aérea incluye a más elementos que la detección por radar, aunque tal vez esta sea la más importante y la que más ha costado. Es por eso que podemos dividir el concepto de furtividad en varias áreas.

Forma del avión

Sin duda alguna esta es la parte principal del concepto de la furtividd, particularmente al radar, y la que más desarrollo y esfuerzo técnico ha costado. La principal función de la forma en un avión furtivo es lograr que la señal del radar no regrese al aparato emisor, sino que se disperse hacia otra parte, impidiendo que el emisor reciba el eco.


El bombardero pesado inglés Vulcan, prácticamente un ala voladora, resultó ser accidentalmente furtivo al radar. Solamente lo traicionaba su cola vertical y sus materiales tradicionales, pero eso no impedía que a veces se perdiera su localización en el radar. De haberse continuado con la idea original que no incluía una cola, se podría haber logrado una mayor furtividad; sin embargo no existía en la época de su diseño un sistema computarizado lo suficientemente complejo como para hacer volar un aparato de este tipo.

Indirectamente hay que remontarse al siglo XIX, antes de que existieran siquiera los aviones. En ese entonces, el físico escocés James Maxwell desarrolló una serie de fórmulas matemáticas para predecir cómo la radiación electromagnética rebotaba y se desperdigaba al golpear una figura geométrica de ciertas características.

Con el tiempo, estas fórmulas fueron mejoradas y refinadas por un científico alemán, Arnold Johannes Sommerfield. Sin embargo, todos se topaban con problemas. Calcular las reflexiones electromagnéticas en figuras sencillas era relativamente fácil, al menos teniendo algo de tiempo. Sin embargo, el cálculo para objetos complejos resultaba prácticamente imposible sin tener computadoras; incluso si fuera técnicamente posible llevaría demasiado tiempo.

En ese tiempo llegó el radar, la Segunda Guerra Mundial y luego la Guerra Fría. Eventualmente en EEUU surgió la idea de reducir la firma radar, el RCS, de los aviones de reconocimiento como el U-2 y el SR-71, hacia finales de los 50s. Sin embargo, no existía la base científica suficientemente desarrollada como para calcular qué forma era mejor.

Este problema se solucionó indirectamente, de manera bastante irónica, con ayuda soviética. Durante la década de 1960, un científico ruso llamado Pyotr Ufimtsev comenzó a desarrollar ecuaciones tendientes a predecir el reflejo de las ondas electromagnéticas en formas en dos dimensiones. Era normal que incluso en la Guerra Fría hubiera un cierto contacto e intercambio entre científicos rusos y estadounidenses, siempre que sus trabajos no tuvieran que ver con proyectos militares o posiblemente peligrosos para la seguridad nacional. Fue así que, sin que las autoridades soviéticas se dieran cuenta, los trabajos de este científico fueron regularmente traducidos al inglés y recopilados en publicaciones científicas de EEUU.

Una década después, un grupo pequeño de científicos, matemáticos y diseñadores de aeronaves comenzaron a ver las posibilidades que se abrían al combinar sus conocimientos. Podían diseñar aviones que tuvieran una RCS menor, sin hacerlos necesariamente más pequeños. Fue así que se probaron algunas ideas en el SR-71, diseñado por la Lockheed.

Se dice que tomando los trabajos de Ufimtsev, un matemático estadounidense llamado Bill Schroeder, trabajando para la Lockheed, desarrolló un programa de computadora que hacía posible predecir la RCS de un avión. De allí a lo que venía, había poco camino. Luego de un tiempo de estudio, Schroeder diseñó un avión cuya forma exterior estuviera formada por polígonos facetados, que funcionaron como espejos pero reflejando las ondas del radar lejos del aparato emisor. Esto llevó directamente al F-117.

No hay que olvidar, sin embargo, que la posibilidad de reducir la firma radar ya estaba en la teoría apenas se creó el radar, y que de hecho se fue acumulando mucha información de manera más o menos fortuita. De uno y otro lado, cada tanto surgían aviones que demostraban aciertos o errores (generalmente insospechados) en cuestiones de furtividad. Y los diseñadores y científicos notaban esto, para bien o para mal de sus siguientes diseños.

Se puede mencionar así al bombardero pesado inglés Vulcan, el cual fuera diseñado primordialmente como un ala voladora. El proyecto final, más conservador, incluyó una gran cola vertical, pero eso no impedía que fuera difícil de detectar, teniendo una baja RCS para su tamaño gracias a sus enormes alas casi curvas y a su estilizado diseño. No eran pocas las veces en las que, en determinadas condiciones, desaparecía del radar completamente.

En el otro lado del espectro, aviones como el Tu-95 soviético, apodado Bear por la OTAN, era como una antorcha en la oscuridad en términos de radar. No solamente por su tamaño enorme, sino porque sus cuatro pares de hélices contrarrotatorias (de 5,6 metros de diámetro) eran como espejos, reflejando y posiblemente amplificando la señal del radar.

De estos dos casos se aprendieron grandes lecciones sobre el diseño de aeronaves furtivas al radar, y de muchas otras experiencias más o menos positivas.

El YF-23 Black Widow, contendiente del Raptor, es un clarísimo ejemplo de la combinación de elementos furtivos. Su forma de diamante volador, combinando numerosas formas triangulares, particularmente en la cola, con las sutiles curvas de la nariz y los motores empotrados por encima del fuselaje. Incluso la forma de las alas son triángulos con la punta recortada; no se puede encontrar ningún ángulo particularmente agudo. La cola, dividida en dos superficies de control inclinadas hacia afuera, completa el efecto.

En primer lugar, se descubrió que la cola de los aviones era la principal fuente de reflejo en casi todos los casos. Esto se debe a que las figuras que mejor devuelven el radar son las formadas muy sobresalientes y los ángulos agudos, lo cual sucede especialmente en la cola, donde se insertan las superficies de control. La gran mayoría de los aviones de esa época tenían una sola gran superficie vertical de control, y en los bombarderos por su tamaño esta debía ser mayor; no es de extrañar entonces que fueran muy visibles en el radar.

Esto hizo que muchos aviones tuvieran colas muy diferentes. Por ejemplo, ya el SR-71 no tiene una sola cola, sino más bien dos aletas, montadas sobre los motores, ligeramente inclinadas hacia adentro. El F-117 y su famosa cola de mariposa es similar, solo que las dos aletas están inclinadas afuera y en un ángulo mucho mayor. El B-2, al igual que el diseño original del Vulcan, sencillamente no tiene cola.

Esta característica se aprecia también desde hace tiempo en aviones no pensados para ser furtivos, como el F-18, con doble deriva inclinada. Incluso se ha llegado al rediseño de aviones ya existentes, como la versión iraní del F-5, copiada sin licencia, que tiene una cola doble con planos inclinados hacia afuera.

En el caso de la cola y todas las superficies que pudieran tener ángulos agudos, el rediseño es importante para lograr la furtividad. Esto hace que se abandonen a veces ciertos diseños de superficies de control no solamente en la cola: los canards permiten ganar en maniobrabilidad pero también aumentan, según se dice, el RCS.

Como en el caso del Bear, se descubrió que las hélices, al rotar rápidamente, reflejan particularmente bien las ondas del radar. Esto se aplica no solamente a los aviones de pistón, sino también a los reactores, que incluyen hélices dentro del mecanismo. La solución más directa es empotrar los motores dentro del fuselaje del avión, protegiendo las entradas de aire de varias maneras. El F-117 usa una serie de rejillas que filtran las ondas y las absorben; otros modelos tienen vértices o bordes especiales que impiden que la señal entre o salga.

Finalmente, una parte más sutil, menos visible pero igualmente importante del diseño furtivo es la alineación de las superficies. Esto es, que la mayoría de las superficies tengan orientaciones y ángulos similares, paralelos, en lugar de ángulos diferenciados. El ejemplo más claro es el del F-22, cuyas superficies de control en las alas y la cola mantienen el mismo ángulo, en planos paralelos. Esta parte del diseño está allí para lograr un efecto particular: hacer que la onda del radar se aleje en una sola dirección en lugar de desperdigarse hacia diferentes lugares, pudiendo alertar a otros radares.

El uso de triángulos es bastante característico de los aviones furtivos. En la mayoría de los diseños, se utilizan bordes serrados en lugares críticos como las entradas de aire de los motores, las alas, las puertas de las bahías de carga, etc. Esto es más que visible en cualquier fotografía de los aviones mencionados previamente. Estos triángulos, más o menos pequeños, están hechos de manera que la onda, al ingresar, sea dirigida hacia el interior, de manera de rebotar en sus lados y salir, disminuida, hacia otra parte en lugar de volver al aparato emisor.

La curiosa forma del F-117 está pensada para dispersar las ondas de radar en diferentes direcciones.

Con respecto al F-117, tal vez el avión que más utiliza este recurso, se dice que esto se debe a que en la época de su diseño las computadoras y sistemas matemáticos no podían calcular formas furtivas curvas. De manera que los diseñadores fueron ensamblando modelos matemáticos lineales, lo cual dio como resultado la forma tan extraña del aparato. En el B-2, más avanzado y diseñado con otra tecnología, sobran las curvas, dando lugar a un diseño mucho más aerodinámico. Las curvas aparecen, combinadas con los triángulos, en otros aparatos como el F-22 o el YF-23.

Este es, sin duda, el principal problema de crear aviones furtivos muy especializados: la falta de aerodinamia. No por nada lo llamaron «el diamante sin esperanza»: el F-117 tiene un pobre desempeño y su forma está lejos de ser práctica para el vuelo. De no ser por su costoso sistema de navegación por computadoras, el aparato no levantaría vuelo, y en el aire caería rápidamente. A diferencia de otros aviones, que pueden planear un poco o mantenerse en el aire con falta de potencia o incluso sin motores, esto es mucho más difícil para estos diseños. El eliminar la cola en el caso del B-2 es otro ejemplo claro: sin computadoras, las primeras alas voladoras tenían graves problemas de estabilidad, y fue así que el Vulcan consiguió su cola.

Obviamente, las computadoras de control están duplicadas o triplicadas por razones de seguridad, pero esto agrega costo y peso a los aparatos furtivos.

Estructura

Algo muy relacionado con la forma del avión, pero que incluye aspectos diferentes, es la estructura general del diseño. Particularmente, cómo y donde se van a almacenar las armas.

De poco serviría diseñar un avión furtivo con mucho cuidado, si luego se colgaran de sus alas todo tipo de armamento no furtivo, con formas que reflejarían las ondas del radar. Es por eso que todos los aviones furtivos especializados, y también muchos de los no tan especializados, tienen una bahía interna de bombas.

Esto es particularmente visible en el F-117 y el B-2, para los cuales es imposible cargar armamento, sensores o cualquier otra cosa debajo o en la punta de las alas. Otros diseños furtivos no especializados, como el F-22 y el F-35, tienen una bahía de carga interna, pero pueden cargar opcionalmente ciertos tipos de armamentos bajo las alas, si fuera estrictamente necesario.

El F-22, como otros aviones de reciente diseño, poseen bahías de carga interna para su armamento, y no pueden llevar cargas externas normalmente. En esta fotografía podemos ver el lanzamiento de un misil desde su interior.

Indirectamente esto puede traer algunos problemas menores. Por ejemplo, se hace difícil llevar tanques de combustible desechables sin reducir la carga de armas. También puede suceder que el tamaño de la bahía de carga sea amplio pero no lo suficiente; es posible que el avión pueda cargar una cantidad menor de armamento y accesorios de la que teóricamente podría llevar bajo sus alas y el fuselaje. Sin embargo estos problemas son relativamente fáciles de solucionar: el abastecimiento en vuelo es la respuesta al primero. Con respecto a la falta de espacio, ya se han diseñando sistemas de armas más pequeños para el caso del F-22, lo cual incrementa la capacidad del aparato.

Otro factor importante es la creación de una estructura interna que capture las ondas, haciendo que reboten de manera interna, sin amplificarse, sino justamente debilitándose. Esto se logra creando triángulos de cierto tipo, como en un juego de espejos. Si uno ve el SR-71, le sorprenden sus formas redondeadas, las cuales no solamente son por cuestiones aerodinámicas sino también furtivas; sin embargo, por dentro la estructura es básicamente triangular.

Materiales

Muchos materiales se utilizaron la historia aeronáutica, y siempre existió la idea de hacer poco visible a los aparatos. Hechos de madera, tela y alambre, los primeros eran lentos y grandes; no es de extrañar que algunos hayan pensado en pasarse a materiales exóticos para la época, como el papel celofán. Lamentablemente, la idea de este ignoto diseñador de la época no funcionó, ya que el celofán, aunque sea transparente, es muy brillante y la luz del sol lo hacía particularmente visible a largas distancias.

Sin embargo, la creación del radar llevó a pensar en materiales invisibles para otros tipos de ondas: las electromagnéticas. En este sentido, el aparato más interesante y furtivo de la época fue el bimotor Mosquito, de origen inglés, cuyo fuselaje estaba totalmente hecho de madera. A excepción de los motores y otros elementos de metal, como las hélices, este material reflejaba menos las ondas del radar, y absorbía o dejaba pasar el resto. Esto lo hacía menos visible en las pantallas del radar, mientras su velocidad y maniobrabilidad hacían el resto.

Una de las formas primordiales de evitar el reflejo del radar era encontrar materiales que ni los reflejaran, pero que tampoco los dejaran seguir su camino. Los metales por su naturaleza eran particularmente buenos reflejando las ondas de radio. Muchos materiales sintéticos como el kevlar y la fibra de vidrio eran en cambio como cristales: dejaban pasar las ondas del radar sin alterar su naturaleza. Sin embargo, esto no llevaba a ninguna parte: un avión recubierto de estos materiales o con su fuselaje hecho a partir de materiales plásticos seguiría necesitando grandes piezas de metales en su interior (motores, controles, computadoras, etc.). De manera que eso tenía poca utilidad: los elementos internos harían rebotar las ondas del radar, que volverían a su emisor sin demasiados problemas.

El caso del Mosquito fue el primer uso de la tecnología de materiales absorbentes del radar, aunque era solamente un tibio comienzo. Con el tiempo, los aviones fueron incluyendo aleaciones de metal que eran más ligeras, resistentes y que también tenían menor incidencia sobre el radar. Luego los materiales plásticos fueron tomando la posta; sin embargo, hacía falta un material especializado, que es el que se usa actualmente.

El RAM (Radar Absorving Material, o Material Absorvente del Radar) fue la respuesta. En forma de pintura negra, se comenzó a estudiar y aplicar en el SR-71. A partir de entonces los militares estadounidenses continuaron desarrollando más y mejores materiales de este tipo. Desarrollado en total secreto, este material fue y es una de las incógnitas mejor guardadas de la tecnología aérea estadounidense.

Las primeras versiones del F-117 estaban cubiertas con lozas de un material similar al neoprene, que tenían granos minúsculos de ferrita incrustados en la matriz del polímero. Sin embargo, los más avanzados materiales absorbentes del radar son aplicados como si fuera pintura, particularmente en los bordes de las superficies de metal. Este tipo de pintura debe ser manipulada por robots, ya que se descubrió que era altamente tóxica; además debe ser aplicada con una precisión muy alta, que se asegura al ser utilizado un aparato mecánico fácilmente calibrable. Particularmente importante es el ancho de la capa de pintura, cuyo grado de error debe ser mínimo. Al igual que con los chaff, esto es así porque esta distancia está relacionada con la frecuencia de radar que se desea evitar.

Un tipo de RAM utilizado ya por SR-71 se llama pintura de bolas de hierro, debido a que contiene pequeñísimas esferas de ferrita, un mineral de hierro. Por las leyes de la termodinámica, ninguna energía puede desaparecer: las ondas de radio son una forma de energía. Lo que hace este tipo de material es absorber estas ondas, las cuales al chocar con la estructura altamente magnética de ferrita, se convierte en calor. Más que absorber solamente, lo que hace el RAM es convertir las ondas del radar en algo diferente; esta pequeña cantidad de calor se pierde en el aire.

El RAM, que suele ser negro, puede aplicarse en todas las superficies externas del avión, excepto en la cabina. En este caso, el proceso es similar: el cristal es recubierto de una fínísima capa transparente de un material conductor, que puede ser oro o algún óxido especial. Esta capa es tan delgada que no tiene ningún efecto sobre la visión del piloto, y se aplica utilizando avanzados sistemas de vaporización.

Obsérvese la cuidada disposición de los planos de control traseros en el Raptor: las aletas que conforman la cola tienen formas poligonales con ángulos obtusos, y no hay ninguna punta que sobresalga. Puede observarse también el esquema de camuflaje con dos tonos de grises.

Los cristales de la cabina deben hacerse absorbentes del radar por una simple cuestión: si las ondas de radar entraran a la cabina, rebotarían de maneras imprevisible en las superficies metálicas del interior. Esto daría una posibilidad de que el radar pudiera detectar el avión; incluso aunque esa posibilidad sea remota, debe reducirse lo más posible.

El RAM es caro; no es curioso que los materiales plásticos hayan sido y sigan siendo los principales materiales para evitar el radar. En la década de 1950, el U-2 y el SR-71 inauguraron la era de aviones que empleaban paneles de plástico en forma de colmenas en el interior de las alas, para hacerlas más livianas y no reflejar el radar. En la actualidad, muchos aviones no furtivos como el Typhoon europeo emplean materiales compuestos en la cola, los canards o las alas, principales lugares donde, de otra manera, rebotaría el radar. Esto ayuda a reducir la RCS notablemente.

Emisiones

Los aviones tienen dos grandes tipos de emisiones: de calor, por parte de sus motores, y de emisiones de radio, de parte de sus sistemas de comunicaciones y sus propios radares activos. De manera que también es importante reducirlas para mejorar su furtividad.

Las emisiones de calor han sido enmascaradas desde que se han inventado los sistemas infrarrojos, hacia mediados del siglo XX. Es por eso que se conocen muchas formas de reducir la denominada firma infrarroja, fácilmente visible con los adecuados sensores. Muchas de estas opciones pueden y son utilizadas simultáneamente en ciertos aviones, desde hace un tiempo, pero los furtivos son los que más las utilizan.

Estos sistemas inyectan aire frío directamente en el escape, antes de que salga del avión, para reducir previamente la temperatura de los gases de la combustión. Otra opción es montar los motores y las toberas encima de las alas, como sucede en el B-2: visto desde abajo, ningún sistema infrarrojo o visual podrá detectar los motores calientes (las alas los enmascaran), mientras los gases, al salir de la tobera caliente, son rápidamente disipados por los vórtices generados por el mismo vuelo. También es posible hacer correr algún tipo de enfriador, principalmente combustible, dentro de los conductos del sistema.

Una forma, relativamente nueva y poco utilizada anteriormente, es utilizar toberas no circulares, con forma rectangular. Esto maximiza la mezcla rápida entre los gases calientes y el aire frío. Además, está indirectamente relacionado con el uso de toberas en 2D, que se están usando en aparatos muy novedosos como el F-22. Sin embargo, como puede verse, este sistema se usa en otros aparatos furtivos.

Un dato a tener en cuenta es que los gases de la combustión, al estar ionizados, pueden llegar a silbar en el espectro electromagnético. Un caso particularmente curioso es el del SR-71, con una enorme cola de gases supercalentados, que cantaba su posición incluso en radares pasivos. Un truco más complicado para contrarrestar esto es lograr que los gases se calienten hasta cierto punto, llegando a una temperatura en la cual la ionización cree ondas electromagnéticas fácilmente absorbibles por el dióxido de carbono y el vapor de agua, presentes en el aire.

En cuanto a las emisiones electromagnéticas, los aviones furtivos tienen sistemas de detección principalmente pasivos, que no emiten nada, sino que «escuchan» los radares enemigos. Los sistemas laser y de visión infraroja son vitales para el éxito de la misión con los B-2 y los F-117, al igual que los sistemas de televisión de baja luminosidad.

Con respecto a las emisiones sonoras, no son un gran problema. Los aviones furtivos más especializados, por cuestiones aerodinámicas generalmente, no suelen tener capacidad supersónica, de manera que no pueden crear un boom sónico al cruzar la barrera del sonido. De todas maneras es un apartado que se tiene en cuenta en el diseño.

Visibilidad

Para evitar su detección visual, los aparatos furtivos al radar usan el camuflaje óptico más antiguo de mundo: la oscuridad. Pintados uniformemente de negro, como hacían antes los cazas nocturnos de la Segunda Guerra Mundial, atacan solamente de noche, cuando el cielo está tan oscuro como ellos. Es esa la razón por la cual nunca llevan camuflaje de otros colores, ni insignias fácilmente visibles.

Este truco ya estaba presente en el SR-71. Se identificaba a estos aparatos con la oscuridad y es cierto que estaban diseñados específicamente para los ataques nocturnos. Sin embargo, con el tiempo, la necesidad de seguir ampliando el uso de la furtividad a otros aparatos hizo que se desarrollaran otras opciones.

El interés de la USAF en tener aviones furtivos todotiempo, como el Raptor, llevó al desarrollo de esquemas disruptivos de pintura, algo que no sucedía ya que desde hace tiempo los aviones estadounidenses vuelan totalmente pintados de un solo tono de gris (o como mucho, dos tonos muy similares).

A pesar de la pintura negra, de noche es posible detectar visualmente a un avión: con buena luz de luna o con cierto tipo de nubes, éste se hace visible. Una experiencia reveladora tuvo lugar en este sentido durante la primera noche de la Guerra del Golfo de 1991: un Mirage F1 iraquí estuvo a punto de descubrir a un F-117 (si es que no lo hizo) cuando el avión invisible apareció sobre una capa de nubes claras. El piloto estadounidense, sin embargo, logró evadirse rápidamente sin llamar demasiado la atención.

Esta experiencia en combate recolectada tanto por el B-2 como por el F-117 ha demostrado la importancia de planear las misiones teniendo en cuenta las altitudes en las cuales pueden formarse nubes claras que puedan develar la silueta de estos aviones.

Promesas y preguntas

Sin embargo, no hay que dejar de lado que los aviones furtivos son justamente eso: difíciles de detectar. La tecnología stealth ha demostrado, desde los comienzos, tener más limitaciones que las que se admitieron en un momento. Pasemos a dar un vistazos a esos fallos o esos casos en los que la tecnología furtiva no ha dado todo lo prometido, o en la cual ha obligado a compromisos de diseño que reducen, posiblemente, la eficacia general del aparato.

La superficie del espejo

El primer problema está en el material absorbente de las ondas del radar. El tiempo y la experiencia en combate han demostrado que se trata de un material frágil, que requiere de mucho cuidado y que se deteriora si las condiciones climáticas son algo extremas. Esa posible que la versión naval del F-117 no hubiera llegado a buen puerto por esta razón; y hay que recordar la experiencia del Nighthawk «pelado» de su RAM por una tormenta de arena en Irak.

Los problemas en el mantenimiento del RAM también implican instalaciones más especializadas, que solamente existen en Estados Unidos y en otros pocos lugares del mundo. Es bastante probable que esto no se deba solamente al tipo de herramientas y dispositivos necesarios (para el F-117 hubo que diseñar una escalerilla de acceso diferente a la del resto de los aviones, por ejemplo) sino al hecho de que se necesiten hangares totalmente aislados de las condiciones meteorológicas externas.

Sin embargo, el problema del RAM está más allá de los costos. Uno de los hechos que siempre se evitó comentar es que los aviones furtivos no podían ser totalmente invisibles al radar en todas sus frecuencias. Incluso antes de que el F-117 y el B-2 salieran a la luz, los expertos ya lo sabían, y de hecho se comentó en muchas revistas especializadas.

El asunto es que el RAM solamente es efectivo contra ciertas longitudes de onda de radio: las que coinciden con el espesor de la capa de ferrita usada como antirreflectante. Esta puede ser la causa por la cual los radares de onda larga usados por los rusos podrían detectar a los aparatos furtivos más fácilmente. Sucede que no se puede poner una capa de material absorbente muy gruesa, ya que eso perjudicaría todavía más la velocidad y maniobrabilidad del aparato. En definitiva, el F-117 y el B-2 fueron diseñados para evitar los radares más sofisticados de ese momento, pero no pueden ser pensados para evadir todos los radares, incluidos los más antiguos.

El mantenimiento de un avión tan especializado debe ser perfecto: un error en la construcción o la revisión del RAM puede crear los ecos suficientes para que sea detectado y derribado.

Pero no todo termina allí. Desde hace un buen tiempo, los radares más avanzados operan con lo que se llama «salto de frecuencia»; es decir, cambian constantemente las longitudes de onda de sus señales. Esto les permite evitar los dispositivos de jamming, que en respuestas deben saturar muchas bandas de radio para volver a ser eficaces. Un radar moderno, con saltos de frecuencia muy dispares, podría no detectar a un avión furtivo durante unos momentos, pero si cambiara de frecuencia y encontrara una que sí le permite ver al aparato, entonces este estaría condenado, al menos si está solo y no tiene escoltas. Sin jamming ni señuelos, sería lo que los estadounidenses conocen como un «pato sentado». Esto es lo que finalmente se tuvo que hacer sobre los cielos de Serbia: enviar aparatos furtivos, que estaban diseñados para trabajar solos, con una gran escolta para evitar ser derribados o dañados.

Sin embargo, hay indicios que dicen que en la etapa de diseño se intentó un ingenioso truco para evitar esto. No se sabe si los aviones furtivos lo adoptaron, pero sería posible. El truco consiste en separar las ondas de radio en dos, colocando una capa doble de material RAM. De esta manera, una reflejaría un promedio de frecuencia y otro la segunda, haciendo coincidir la cresta de una onda de radio con el seno de la otra, contrarrestándolas mutuamente. Este sistema está diseñado de una manera tal que, si las frecuencias de radio varían repentinamente, se produce calor en una capa de metal especial, que entonces dilataría el RAM. Así, el grosor y por lo tanto la capacidad de absorción iría variando según las necesidades.

Según se sabe, este truco funcionó en experimentos de laboratorio, pero no se sabe si lo hicieron en condiciones no controladas, volando a diferentes presiones atmosféricas, velocidades, con clima frío o muy caluroso. Tal vez los aviones furtivos los utilizan y por eso son tan complicados de mantener, pero lo que es obvio es que no funcionan siempre.

Los materiales secretos que absorben las ondas de radar ocultan otro secreto negativo: al parecer podrían ser muy tóxicos, los materiales o sus procesos de fabricación. Ni siquiera el enorme velo de secretos de los Skunk Works logró detener la noticia de que muchos operarios de Lockheed habían iniciado demandas contra la compañía, aquejados de cáncer y de una enfermedad extraña de la cual nada se ha dicho. La empresa negó que se tratara de material peligroso, pero no sería la primera vez que un secreto militar pasa por encima de la verdad y de los derechos humanos. No se supo si la fabricación del B-2 trajo estos inconvenientes, pero tal vez si los hubo, fueron acallados prudentemente por la Northrop. Como ya se ha dicho, este problema se solucionó finalmente utilizando robots.

Trucos y contra-trucos

Como ya se mencionó, visualmente puede darse el caso de la detección, si hay algo de suerte. Por otra parte, ninguna emisión, sea de calor o de otro tipo, puede ser eliminada o enmascarada totalmente. Teniendo en cuenta que muchos sistemas de misiles utilizan guías infrarrojas, se pone énfasis en esconder cualquier firma de calor: sin embargo, a las grandes alturas en las que operan los aviones, el contraste de temperaturas entre los gases incandescentes de los motores y el aire es todavía notable.

Las emisiones electromagnéticas pueden ser evitadas fácilmente, eliminando los radares y estableciendo un estricto uso de la radio. Pero esto puede dañar notablemente el desempeño de la aeronave: al contar solamente con instrumentos de medición pasivos, se resiente el potencial de información disponible, ya que estos dispositivos no son tan fiables como los activos.

Finalmente, los aviones invisibles al radar no siempre lo son. Se ha demostrado que en circunstancias determinadas pueden ser detectados por sistemas especiales. Radares especiales, sistemas diseñados de manera particular, ingenio por parte de un controlador de batería o por el encargado de toda la defensa aérea de un país (como sucedió en Serbia)… estos y otros factores han derribado y posiblemente dañado aviones furtivos en conflictos reales. Hasta la misma USAF tuvo que admitir que «el stealth reduce la firma de un avión, pero no lo hace invisible. En realidad hemos descuidado la guerra electrónica«.

Esto no es ninguna novedad; a pesar de la publicidad de todo tipo creada por la USAF y los fabricantes de estos aparatos, algunos expertos independientes dudaron siempre de su verdadera invisiblidad al radar. Apenas salido del B-2 del hangar, e incluso un poco antes, ya se habían propuesto algunas maneras de detectarlos, que al menos en teoría, funcionaban.

Una de ellas era utilizar radares de reflexión ionosférica, u OTH. Estos aparatos muy ingeniosos logran evitar el gran problema de los radares comunes, que son bloqueados por accidentes del terreno, y no pueden ver más allá del horizonte debido a la curvatura de la Tierra. Sencillamente, envían sus ondas hacia arriba, a la ionosfera, una zona de la atmósfera que, como su nombre indica, está plagada de actividad iónica. Allí la onda de radio rebota, y cae desde el cielo en un punto muy alejado de su fuente. Luego hace el camino inverso, rebotando en lo que encuentre cerca del suelo o en el aire, luego de nuevo a la ionosfera, y luego al radar de escucha. Este sistema es habitualmente utilizado para alertas tempranas, o sea, detectar fuerzas enemigas a muy larga distancia, evitando así la sorpresa. En la época de la creación del B-2 ya estaban en funcionamiento y de hecho al parecer la URSS ya los tenía. Esta misma técnica de detección desde arriba podría servir combinando satélites espías con radares terrestres. Se trata, sin embargo, de un truco costoso en equipamiento, que pocos países podrían intentar a nivel táctico.

Hay otras respuestas más accesibles a ciertos escenarios. Por lo general, la única forma de vencer a un avión furtivo es combinando aparatos complejos y mucho ingenio, usando trucos como lograr una refracción hacia radares que no estén emitiendo. Justamente esta es la clase de trucos que puede haber funcionado en la práctica, en el caso del F-117 derribado sobre Yugoslavia. Utilizando una red de radares móviles, que funcionen unos como emisores, y otros como receptores, podría lograrse la detección de las pocas ondas de radar que el RAM no absorbe. Debido al cuidado diseño de estos aparatos, por lo general dichas ondas de radio no hacen lo que se supone que hagan, es decir, regresar a su fuente emisora y dar los datos de distancia y velocidad. Pero al rebotar hacia otras partes, radares enlazados en una red cuidadosamente planeada pueden recibir estos datos de ondas emitidas por otros radares. Esta podría ser otra de las hipótesis de cómo los serbios derribaron al caza furtivo.

El desarrollo de sistemas más sofisticados de rastreo térmico es otra respuesta posible: estos aparatos infrarrojos de nueva generación, podrían detectar las leves señales de calor procedente de los aparatos furtivos. Se especula con que algunos radares anti-furtivos rastrean la estela de turbulencia creada en el aire por los aviones, incluso los más invisibles. Como en todo, allí donde se descubre un truco, siempre hay un truco para contrarrestarlo.

La cuestión sobre la furtividad es que no hay invisibilidad absoluta: todo puede ser detectado. Por ejemplo, la principal forma de furtividad, la forma del avión, no ofrece siempre las mismas ventajas. Contra radares de baja frecuencia es igualmente detectable: si la onda es más o menos el doble de larga que el tamaño del blanco, puede dar un buen reflejo radar.

Lo bueno es que los radares de baja frecuencia tienen desventajas: principalmente las pocas frecuencias utilizables ya que se superponen con otras ya usadas, y el hecho de que requieren antenas muy grandes, difíciles de transladar. No son precisos; sirven para decir que allí afuera hay algo, pero no para decir donde está. Incluso si localiza un blanco, posiblemente no pueda identificarlo.

Otros sistemas electrónicos desarrollados en Europa del Este para evadir las características furtivas de estos aparatos, aparentemente escucharían el ruido electromagnético de sus propios sistemas, o tienen otros trucos desconocidos. No es extraño que, siendo EEUU el más antiguo usuario de furtivos especializados y el más adelantado en furtividad, países como China y Rusia se hayan especializado durante años en crear sistemas de defensa anti-furtivos, mientras buscaban crear sus propios aviones furtivos.



Los furtivos rusos

El 8 de octubre de 2001, científicos rusos admitieron que habían llevado a cabo experimentos y pruebas con los restos del F-117 derribado en Yugoslavia. Hasta ese momento, el misterio había rodeado el destino de estos restos, aunque muchos sospechaban de los rusos, como finalmente se confirmó.

Según estas declaraciones, los estudios habían estado dirigidos hacia la mejora de los sistemas de defensa rusos, intentando lograr la capacidad de detectar y destruir aviones furtivos. Conjuntamente con esa iniciativa, y esa era la verdadera noticia, los diseñadores de sistemas de defensa aérea habían modificado aeronaves tácticas rusas para probar nuevas maneras de hacerlas furtivas, sin tener que construirlas desde cero.

Sin embargo, el anuncio debía tomarse con cuidado: no significaba que Rusia se hubiera apropiado de la tecnología estadounidense. Del F-117 solamente habían sobrevivido grandes partes, pero no todo, y muchas secciones, como los motores, se habían desprendido o estaban destruidos. Las fuentes rusas admitieron que no habían podido reconstruir el avión, y que no era lo mismo probar los sistemas en fragmentos del aparato que con el aparato completo.

El F-22 Raptor es, para muchos analistas, el nuevo caza a batir. En el caso de una supuesta guerra entre EEUU y otro país, sus capacidades furtivas inigualadas serían vitales para su supervivencia; no es de sorprender entonces que muchos países busquen la forma de detectarlo. Obsérvese la inclinación de las tomas de aire de los motores, para crear un ángulo muy abierto con respecto a las alas, y la correcta alineación entre estas tomas y las aletas de la cola: los planos son paralelos, y la forma frontal de la cabina es un diamante especialmente diseñado.

Uno de los problemas principales es que los científicos no pueden saber cuánta es la energía disipada por un F-117 completo, y de esa manera no pueden calibrar efectivamente los sensores para detectar aviones de este tipo. Además, como el B-2 y el F-22 (que tiene un diseño furtivo menos especializado) usan tecnología y materiales diferentes, no se puede usar datos de la prueba contra estos aparatos.
Pero incluso así, es evidente que los científicos rusos pudieron averiguar muchas cosas útiles. Rusia estaba experimentando también con la tecnología furtiva, pero gastando mucho menos dinero, ya que apenas estaba comenzando a ser un estado independiente luego de la caída de la URSS, y el proceso de reorganización militar fue largo y costoso. En este contexto, el derribo del F-117 les vino muy bien, ya que pudieron aprender bastante sin gastar demasiado dinero y recursos. Los expertos reconocieron que podían sintonizar mejor sus defensas para detener ataques de pequeños misiles crucero, arma que se está utilizando cada vez más. Las defensas serbias derribaron varios Tomahawk y pueden haberle enseñado a los rusos algunas lecciones sobre cómo hacerlo, de la misma forma que pasó con el F-117.

Estos expertos dijeron que, con los logros del programa ruso, se podían ubicar aviones de poca firma radar a unos 90 kilómetros, lo cual los convierte en sensores muy útiles. Esto quiere decir que los nuevos sistemas de defensa aérea rusos de la época podrían destruir misiles crucero y otras armas de ese tipo.

Rusia no tuvo nunca un programa furtivo especializado como el Have Blue, que derivó en el F-117. Los enormes costos asociados a este tipo de experimentación no eran posibles en los últimos años de la URSS ni tampoco en los años siguientes a su caída, momento en el que el gasto militar se relajó enormemente, haciendo que los arsenales ex-soviéticos quedaran llenos de vehículos sin uso y mal mantenidos. Sin embargo, según declaraciones oficiales, la Fuerza Aérea Rusa modificó al menos dos aeronaves de uso táctico de tal manera que su firma radar disminuyó significativamente. Esto fue, sin duda, una de las primeras investigaciones de bajo costo que comenzaron a desarrollarse en esos años, demostrando que no era necesario tener un aparato furtivo especializado.

Otro uso para estos aparatos furtivos rusos fueron la recolección de datos: fueron encargados de probar los sistemas de radar que debían detectarlos (o no). Pruebas similares se llevaron a cabo con los restos del F-117; los resultados de todas ellas se almacenaron, al parecer, en una enorme base de datos que, conectada a una computadora, permitía llevar a cabo simulaciones de ataques y detecciones. Los científicos dijeron en esa época que pudieron detectar a los aviones furtivos rusos usando los nuevos equipos. Se dice desde hace años que Rusia desarrolló un nuevo radar que opera en la banda VHF, que podría detectar sin problemas al F-22 Raptor, el mejor caza en el arsenal estadounidense, que posee muchas características antirradar.

El mayor problema sin embargo es el dinero. Se debe recurrir a las simulaciones por computadora como única forma de testeo. Construir vehículos furtivos para ser usados como blancos reales es muy caro, y justamente eso sería lo más provechoso: tener diversos aparatos de prueba a los cuales disparar, para ver cómo funcionan los misiles. Al parecer, todas las etapas de prueba llegan hasta este punto, y nunca se utiliza realmente el sistema completo.

Con el tiempo, sin embargo, Rusia no quiso quedarse detrás de EEUU, y comenzó a desarrollar su propia camada de cazas de quinta generación. Uno de los requisitos para que un aparato entre a este selecto club es, justamente, la furtividad al radar. Apostando a un concurso entre el MFI de MiG y el SU-47 de Sukhoi, lamentablemente ningún aparato logró entrar en producción, pero recientemente se comprobó que el Su-57, similar en muchos aspectos al Raptor, entró en servicio y se está probando en Siria. También conocido como T-50, este aparato fue desarrollado en conjunto con India, y por su forma y estructura es claro que la furtividad fue una de las prioridades de su diseño.

De todas maneras, aunque las fuerzas rusas no tengan aviones furtivos tan especializados como el F-117 o el B-2 (y posiblemente nunca los tengan), es evidente que han aprendido, por una parte, a modernizar diseños previos, reemplazando piezas metálicas por otras de materiales compuestos, y a diseñar vehículos furtivos.

Actualmente el Su-57 sigue en producción, y es de esperarse que tenga muchas sorpresas para mostrar.

El futuro de la furtividad

Si bien es cierto que los aviones furtivos no son totalmente invisibles, también es cierto que tienen algunas ventajas que deberían ser estudiadas más a fondo. Son aparatos superespecializados que para muchos están ya fuera de lugar, porque fueron pensados en la Guerra Fría y con conceptos tácticos y estratégicos muy diferentes. Pero al contrapesar sus ventajas y desventajas, se puede aprender mucho sobre las tecnologías del futuro.

EEUU posee actualmente un bombardero furtivos especializado, el B-2. El F-117, pionero en la tecnología, fue retirado de servicio en 2008 luego de verse sus limitaciones. Con el tiempo, se le unieron dos cazas mucho más avanzados, el F-22 y el F-35. Sin embargo, solo el primero es un caza puro y posee un fuerte énfasis en la furtividad, mientras que el segundo es un caza polivalente, del que no se está hablando muy bien debido a serios problemas de sobrecostos y de producción.

Las dos principales características del Raptor, el nuevo caza de superioridad aérea de la USAF, son su furtividad y su radar. Aunque lo hacen supuestamente invencible, también lo hacen indeciblemente caro: unos 380 millones de dólares por unidad. El elevado costo de la tecnología stealth es una de las principales causas de los escasos diseños especializados: todas las naciones, salvo EEUU, prefieren comprar aviones que tengan ciertas capacidades stealth, pero no están dispuestos a pagar por todas.

Esto parecería indicar que ningún otro país está tratando de abrazar el concepto de furtividad. Pero como ya hemos visto en el caso de Rusia, no es así. La capacidad de fabricar aviones furtivos especializados existe en muchos países europeos y asiáticos, ya sea utilizando conceptos ya conocidos o desarrollando otros nuevos. India, al colaborar con Rusia, seguramente ha aprendido algunas cosas. Mientras tanto, China está desarrollando y produciendo el Chengdu J-20, que entrará en servicio en cualquier momento. Este es otro caza de quinta generación que hace fuerte énfasis en la furtividad, como puede verse en su forma y diseño general. Mientras tanto, cazas europeos como el Rafale, Typhoon y Grippen tienen características furtivas, aunque tal vez no se haya enfatizado tanto el concepto en el diseño general.

Entonces, ¿porqué estos países no siguen el camino de la furtividad especializada, como EEUU? Existen dos grandes respuestas: dinero y diferentes prioridades. Por otra parte, ambas respuestas están interconectadas.

EEUU posee un presupuesto militar gigantesco. El desarrollo de ciertas tecnologías aeronáuticas consume enormes cantidades de tiempo, dinero y recursos humanos. Los dos primeros aviones furtivos especializados fueron comenzados en plena Guerra Fría, cuando había todavía una suma de recursos mayor que la actual destinada a la defensa. No es de extrañar que se continuara su investigación a toda costa, incluso con la URSS en proceso de desintegración.

En esa época, el desarrollo de esta tecnología era primordial porque daba una opción totalmente novedosa a las fuerzas militares. Era una de esos adelantos que podían romper el balance en una carrera armamentista incesante. Era, por lo tanto, una cuestión de prioridad.

En el contexto actual, un aparato totalmente furtivo es un privilegio, generalmente poco útil, que ningún país puede darse. Se trata de aparatos caros de mantener, que tienen un período de desarrollo largo y costoso, lleno de posibles problemas, y que luego son tan caros de comprar que solamente se pueden obtener en pequeñas cantidades. Son aviones tan especializados que es difícil usarlos para algo más que para lo que han sido diseñados.

Mirando el mercado internacional de aviones militares, es evidente que los aviones más comprados y exportados son los polivalentes, aquellos que pueden funcionar bien tanto como cazas como bombarderos ligeros o de ataque a tierra. Un avión tan especializado como un F-117 no podría competir. Y no es casualidad que este avión haya sido retirado de servicio en 2008, con una carrera de unos 25 años, teniendo en cuenta que solamente puede cargar pocos tipos de bombas y su diseño furtivo es de los primeros, menos avanzados.

El caso del B-2 es diferente. Desarrollado como bombardero pesado, sus bodegas permiten alojar muchos tipos de bombas y en grandes cantidades. Su diseño y construcción es de otra generación, más avanzada. Y sin embargo, seguramente el dinero que consume su mantenimiento es considerable; algo que solamente puede permitirse EEUU. Pocos países en el mundo siguen manteniendo grandes flotas de bombarderos estratégicos. La cuestión del mantenimiento es crucial: la escasa producción de estos aparatos hace que a su vez los repuestos sean escasos, porque no se producen en tanta cantidad. Esto ya está sucediendo con el F-22: cada vez que una nave resulta dañada en un accidente, la cuenta es astronómica.

Sin embargo, la tecnología de furtividad al radar no es algo que pueda dejarse de lado. Aunque no se utilice en aviones especializados, sus conceptos pueden ser usados para reducir el eco radar en menos escala, sin comprometer otras prestaciones del aparato. A esto se han dedicado los diseñadores de los modernos caza-bombarderos. La utilización de materiales compuestos en grandes escalas, sumado al diseño por computadora, permite reducir el eco radar sin la utilización de RAM.

El Sea Shadow (Sombra Marina) es un demostrador de tecnología que buscaba mejorar el diseño de las nuevas generaciones de buques de superficie. Actualmente, muchos de los barcos militares más novedosos tienen diseños facetados, que los hacen menos detectables con las ondas del radar.

De esta manera, muchos cazas modernos como el Grippen, el TyphoonRafale, etc., aunque no sean diseños furtivos especializados, siguen estando a la vanguardia del diseño, y son mucho más difíciles de rastrear que diseños anteriores. Estos aparatos incorporan mayor o menor cantidad de aspectos que hacen al concepto de la furtividad ya mencionados.

Finalmente, no hay que olvidar el importante avance que la tecnología de furtividad al radar le dio a la navegación militar. Muchos de las ideas pensadas para los aviones fueron luego derivadas a los buques de guerra. El ejemplo más extremo es el del Sea Shadow, un demostrador de tecnología estadounidense; sin embargo muchos países han creado ya corbetas y otros buques con diversas mejoras en la reducción de la RCS: superficies inclinadas y RAM que son fácilmente identificables con algo de conocimiento.

Reabastecimiento aéreo de combustible

La capacidad de una aeronave para mantenerse en vuelo y alcanzar mayores distancias siempre fue una variable que se deseó aumentar. Los problemas técnicos eran muchos, pero hacia mitad del siglo XX se logró lo que parecía imposible: construir aviones que pudieran ser reabastecidos de combustible en vuelo, sin tener que aterrizar y despegar. El reabastecimiento aéreo de combustible cambió, así, todas las reglas del combate aéreo y terrestre.

El reabastecimiento implica que un avión cisterna o tanquero le provea a otros aviones de combustible, estando ambos en el aire y con los motores encendidos. Esto le permite al avión receptor mantenerse en vuelo por más tiempo, logrando alcanzar distancias que antes hubieran resultado imposibles. Estos sistemas hacen que un avión pueda estar volando, teóricamente, de manera indefinida, siendo limitados primero por la fatiga de la tripulación (la cual puede ser rotada, en el caso de ciertos bombarderos) y luego por ciertas cuestiones de mantenimiento e ingeniería del aparato en sí.

El reabastecimiento hace permite que los aviones obtengan varias ventajas tácticas:

  • que cualquier avión alcance distancias que antes no podría haber alcanzado, particularmente por no estar diseñado para ello;
  • que cualquier avión, particularmente un caza, bombardero o de ataque a tierra, permanezca más tiempo en el aire, a la espera de ayudar a fuerzas amigas;
  • que el avión pueda despegar con carga máxima de armamento, pero poco combustible, en mejores condiciones de seguridad y con una pista de extensión normal. Generalmente el peso máximo de carga de un avión no le permite mantenerse en el aire, y mucho menos despegar; de manera que el avión puede levantarse con mucho peso de armas para llenar sus combustibles más tarde, a la ida o a la vuelta de sus misiones.

Estas ventajas traen aparejadas otras no menores. Por ejemplo, permite que los cazas no gasten puntos fuertes en llevar tanques de combustible desechables, los cuales perjudican su aerodinamia y deben ser lanzados en caso de entrar en combate aéreo.

La capacidad de permanecer más tiempo en el aire es un verdadero multiplicador de fuerza, ya que permite que un avión haga el trabajo de dos o tres, evitando idas y venidas para aterrizajes y despegues.

Actualmente existen dos sistemas ampliamente utilizados para el reabastecimiento en vuelo. Uno es el de pértiga, y el otro el de sonda y cesta. Los dos sistemas son utilizados solamente por aeronaves militares, y no existen compañías privadas que los utilicen.

Sistema de pértiga

Conocido también como boom volador, consiste básicamente en una estructura rígida, generalmente plegada debajo del fuselaje del tanquero, que luego de ser desplegada se introduce directamente en el fuselaje del avión receptor de combustible. Su principal usuario es la USAF.

Para finales de la década de 1940, el sistema de cesta y sonda ya era conocido y había sido usado por varios años. Se conocían entonces sus principales limitaciones: no podía transferir mucho combustible rápidamente. Esto influía negativamente en la necesidad de la USAF por alimentar a sus bombarderos nucleares, ávidos de carburante en sus misiones alrededor del globo. Fue entonces que el general Curtis LeMay, impulsor de muchas innovaciones bajo su mando, le pidió a la empresa Boeing que resolviera el problema.

El resultado fue un dispositivo que consiste en una pértiga rígida y hueca, que sobresale del avión cisterna y está conectada a un gran tanque de combustible interno. A través de la pértiga corre un gran tubo, por el que pasa el combustible.

La USAF es el único servicio en el mundo que utiliza a gran escala el sistema de pértiga. Éste tiene como ventaja una mayor capacidad de transferencia en menor tiempo, pero es algo más difícil de usar debido a que el orificio de entrada está siempre detrás de la cabina. El piloto debe acostumbrarse a hacer las cosas de manera más instintiva, sin poder ver la operación, la cual es monitoreada desde el tanquero. Otra de las desventajas del sistema es que no puede abastecer a varios aviones a la vez, ya que cada tanquero solamente puede llevar una pértiga en el centro del fuselaje.

La pértiga es separada del fuselaje al ser extendida. Usando un sistema telescópico, el tubo que está dentro se extiende más allá del final de la pértiga. En la punta del tubo hay una válvula, que controla la presión del fluido. Esta válvula se introduce dentro del mismo tanque de combustible del avión receptor, el cual está generalmente situado en medio del fuselaje, a mitad de camino de la cola y la cabina y entre las dos alas.

Para mantener la pértiga estable, ésta posee, casi al final, dos pequeñas alas en forma de V. Además de dar estabilidad a la pieza completa, sirven al operador dentro del avión cisterna de guías visuales, funcionando como una especie de mira. Una vez que se extiende el tubo y este se inserta en el tanque, las dos válvulas se ajustan y el sistema impide el escape de fluido.

Este tipo de operaciones es relativamente compleja, ya que requiere que los dos aviones vuelen a la misma velocidad y curso exacto. Además, el piloto del avión receptor de combustible no puede ver directamente si la pértiga o el tubo, que están por encima suyo, están bien alineados. Se requiere, entonces, la ayuda de un operador especial en el avión tanquero.

El operador de la pértiga es, generalmente, un miembro de la tripulación del avión cisterna. Acostado en la bahía de carga, mirando hacia atrás, hace coincidir la pértiga con un mando especial, haciendo pequeños cambios y tratando de alinear las alas de la misma con ciertos puntos de la nave. Esta persona también es la que extrae o retrae el tubo rígido de combustible que está dentro de la pértiga.

Existen muchos pequeños detalles en la operación, lo cual hace que un operador experimentado y un piloto que también lo sea se enganchen más fácilmente. Una vez allí, las bombas envían el combustible por el tubo, hasta que uno de los dos encargados (el piloto del avión receptor o el operador de la pértiga) desconectan las válvulas y separan los aviones, o hasta que un sensor automático detecta que el receptor ya no puede cargar más combustible. En ese caso el sistema se desconecta solo. El operador de la pértiga retrae el tubo dentro de la misma y luego la pliega. Para reducir el arrastre y minimizar el desgaste estructural, la pértiga viaja pegada al fuselaje del tanquero.

El primer avión cisterna en usar el sistema de manera generalizada fue el B-29, de los cuales 116 fueron reconvertidos en KB-29P entre 1950 y 1951. Como el sistema fue desarrollado por la empresa Boeing, muchas veces se lo conoce como «Boeing Boom».

Sin embargo, usar los viejos bombarderos de la época era solamente un paso intermedio. La Boeing se puso a desarrollar el primer avión cisterna especialmente ideado para ello, el KC-97 Stratotanker. Se trataba básicamente de un Stratocruiser con la pértiga y tanques adicionales para abastecerla, los cuales estaban cargados con combustible para jet (mientras que el cisterna tenía motores de pistón). Curiosamente el Stratocruiser había sido desarrollado a partir del B-29, de manera que las experiencias acumuladas fueron usadas en el nuevo aparato.

La mezcla de combustibles no era apropiada, sin embargo, porque el tanquero no podía alargar su alcance consumiendo el otro tipo de carburante. Para el futuro se pensó en un tanquero a reacción que cargara tanto combustible para jets como para motores de pistón. El avión elegido fue el Boeing 707, siendo redenominado KC-135 Stratotanker.

Boeing ha seguido construyendo y usando sus aviones como cisternas de todo tipo. La USAF es la principal usuaria del sistema, sin embargo existen países como Holanda, Israel o Turquía que también usan la pértiga, siempre en aviones Boeing modificados, como el 707 o el 747, el cual fue irónicamente comprado por Irán, antes de la revolución islámica. Este es, posiblemente, el avión cisterna más grande del mundo, al menos en la época, pero aparentemente nunca fue usado o si lo fue, la falta de repuestos tal vez no permite su uso a gran escala.

Reabastecimiento aéreo desde dentro de la cabina del avión receptor. Podemos ver la pértiga desplegada y las dos alas que la estabilizan y sirven de referencia.

La principal ventaja del sistema de pértiga es que, como la manguera es bastante gruesa, permite traspasar mayor cantidad de litros de carburante en menor tiempo. Esto es especialmente útil si se trata con bombarderos pesados u otro tipo de aviones grandes, y fue justamente el origen de la creación del sistema en la USAF.

Sin embargo, el sistema de pértiga tiene algunas desventajas. La pértiga requiere modificar un avión completo, y dedicarlo solamente par esa tarea; estas modificaciones y la propia pértiga tienen su costo. En cambio, el sistema de sonda es mucho más barato: un contenedor puede ser adosado fácilmente en cada ala de un transporte o avión pesado y convertirlo momentáneamente en un tanquero, ya que el sistema es mucho más simple.

Otra desventaja del sistema es que solamente permite reabastecer a un avión por vez. Esto puede solucionarse enviando varios aviones, lo cual no siempre es posible o preferible. Muchos aviones tanqueros, sin embargo, tienen ambos sistemas, incorporando dos mangueras para aviones que usan el sistema de sonda y una pértiga en la posición central.

El sistema más usado en cuanto a cantidad de países, es más versátil en su uso que el de pértiga. Consiste en una unidad de tanque y manguera, en cual guarda el combustible a traspasar y contiene una serie de sistemas para enrollar o liberar la manguera. En el extremo final de esta manguera flexible hay una cesta, formada por un pequeño paracaídas que ayuda a estabilizar el conducto y evitar que vivoree en el aire. En dicha cesta, al llegar al final de la manguera, hay una válvula que controla el paso del fluido.

Sistema de cesta y sonda

El avión receptor tiene una sonda, en forma de lanza, que debe ser introducida en el centro de la cesta: de esta manera las dos válvulas pueden abrirse y se hace el transpaso de combustible. Cada avión tiene una lanza de forma diferente: en algunos es una lanza integrada, fija al lado de la cabina, en otros es una pieza acodada que se despliega del fuselaje, mientras que en modelos más recientes va introducida en el fuselaje y solamente se despliega para las operaciones de reabastecimiento.

El sistema de cesta y sonda es más viejo que el de pértiga, y fue desarrollado por una empresa británica. En consecuencia, por cuestiones de compatibilidad, las válvulas de las dos partes del sistema siguen siendo más o menos iguales que las originales; la OTAN ha puesto hace mucho tiempo un standard que se mantiene entre todos sus miembros, de manera que un avión de cualquier nacionalidad puede ayudar a otro en caso de emergencia o necesidad de una misión. Como muchos tanqueros de países de la OTAN y otros tipos de aviones son vendidos a países fuera del Tratado, esta compatibilidad se mantiene, aunque no esté reglamentada.

La forma de uso del sistema es un poco más sencilla que la de pértiga. El avión tanquero vuela nivelado en una ruta recta, mientras la manguera se desenrolla. Por el mismo arrastre y diseño del paracaídas de la cesta, ésta se ubica un poco por debajo, describiendo una suave curva (como puede verse en algunas fotografías). El paracaídas asegura que la manguera no se mueva demasiado y vuele justo por detrás del aparato.

A diferencia del sistema de pértiga, aquí el trabajo pesado lo tiene el piloto del avión receptor. Una vez desplegadas las mangueras, debe acercarse usando sus propias habilidades. Luego de chequear los sistemas (y extender la sonda si su avión la tiene plegada), tiene que tratar de engancharla en el cento de la cesta. Esta es una tarea que exige entrenamiento, ya que el acomple debe ser perfecto, y cada intento puede dañar el aparato o hacerle perder tiempo a todo el grupo. Es por eso que la sonda está siempre muy cerca de la cabina y puede ser fácilmente vista por el piloto, lo cual facilita la tarea.

Para que las válvulas se acoplen al encontrarse, el piloto tiene que tener la pericia suficiente para darle a su avión un empuje apenas más grande que el del tanquero. Según el sistema de la OTAN, se requiere que el avión «embista» a la cesta a unos 2 nudos por encima de la velocidad del tanquero; solamente entonces las válvulas, al detectar el pequeño choque, se cierran y pueden trabajar.

Si el contacto es muy ligero, las válvulas no se conectan, y si el operador del tanquero o el piloto no se dan cuenta, al abrir el flujo de combustible éste se derrama, peligrosamente, sobre la cabina o sobre el costado del avión receptor. Por otra parte, si el contacto es muy fuerte, la manguera flexible se comba hacia abajo, lo cual puede dañar la válvula de la sonda, que puede romperse, imposibilitando totalmente el reaprovisionamiento y obligando al avión a descender donde pueda.

Aunque más sencillo que el uso de la pértiga, el de la sonda no es menos peligroso. Sin embargo, el diseño facilita que las cosas que salgan mal no sean tan malas. Uno de los mayores problemas durante un reabastecimiento es la turbulencia y los vientos fuertes, que pueden mover súbitamente a ambos aviones en cualquier dirección. Como la sonda es parte estructural del avión, no debe recibir daño, ya que pondría en peligro la supervivencia de los pilotos. El sistema de seguridad hace que, en caso de una violenta turbulencia, lo que se rompa no sea la sonda, sino la válvula en la sonda. Muchas veces se habla de una «sonda rota», pero es solamente una expresión. Estas «sondas rotas» pueden suceder en muchas ocasiones, no solamente durante una tormenta, sino por impericia o error del piloto del avión receptor, a veces facilitados por el stress del combate, su poca experiencia o un problema en el avión (daños por combate, etc.).

Para no tener problemas, lo mejor es seguir el procedimiento de mantener el avión un poco por debajo de la cesta, siempre teniendo a la vista tanto el tanquero como la unidad de abastecimiento (en el caso de que sea externa) y la manguera. Al alinear todos esos elementos, es más fácil hacer los ajustes finales, más pequeños, para enganchar las válvulas.

La sonda fija da un aspecto distintivo a ciertos aviones. El A-6 es uno de ellos; en el caso del A-4, hay varias versiones, algunas que tienen sondas en forma de lanza retraíble, otras que la tienen fijas, separadas de la nariz.

El sistema de sonda y cesta es usado por casi todos los países del mundo, incluyendo EEUU (en este caso solamente lo utilizan la US Navy y el Cuerpo de Marines) y la OTAN. Es un sistema altamente estandarizado y probado por años de uso constante en conflictos de todo tipo; un avión estadounidense puede repostar de un tanquero español o francés, al igual que un caza alemán puede hacerlo de un cisterna inglés o italiano. Esto ha facilitado enormemente el despliegue de las últimas operaciones multinacionales en todas partes del mundo.

En la actualidad este tipo de sistemas no son fijos, sino retraíbles, para mejorar la aerodinamia y reducir la firma radar; incluso los modelos franceses como el Rafale llevan ahora sondas escamoteables dentro del fuselaje.

Una de las grandes virtudes del sistema es que un tanquero puede reabastecer a varios aviones al mismo tiempo, llevando una sonda en el centro del fuselaje y una en cada ala. La única limitación es la distancia entre ellas, la cual debe permitir una buena separación entre avión y avión. Por lo general, la manguera del medio es o más corta o más larga que las de los costado, de manera que el avión del centro esté más separado del resto.

Sin embargo, existen como siempre ciertas limitaciones. Una de las principales es que las mangueras son de tamaño reducido, al compararlas con las del sistema de pértiga. Esto hace que el volumen de carburante por minuto de operación es menor, haciendo que el proceso sea más largo.

Una de las ventajas del sistema de sonda es que permite que un avión pequeño pueda ser reconvertido fácilmente en un tanquero ocasional. La pértiga es un sistema grande que requiere bastantes modificaciones para ser usada, mientras una unidad de abastecimiento no es difícil de introducir en la bahía de carga de un bombardero ligero o un avión de ataque a tierra. Al agregársele un sistema de este tipo, un avión puede darle combustible a un compañero en problemas. Esta idea es usada especialmente por aviones de la US Navy o de los Marines, en donde un avión que necesita aterrizar en un portaaviones y tiene poco margen puede ser auxiliado por otro cercano (que puede despegar del mismo buque), sin tener que desviar un avión cisterna pesado que tal vez está lejos. Este sistema se conoce como «reabastecimiento entre compañeros» (buddy-buddy). Algunos otros aviones, como el Étendard IVP francés, también han utilizado este sistema, siendo un avión tanquero de reconocimiento.

Aunque fue usado por aviones civiles por un buen tiempo, el sistema de cesta y sonda tuvo su bautismo de combate sobre Corea, cuando el 29 de mayo de 1952 doce F-84 fueron reabastecidos durante una misión que partió desde Japón hasta Corea del Norte. En esta ocasión fueron los KB-29M, bombarderos modificados, los encargados del asunto.

Por razones obvias, ningún helicóptero puede usar el sistema de pértiga. Muchos helicópteros pesados tienen sondas extensibles, ya sea dentro como fuera del fuselaje (nótese esta sonda en el lado derecho del aparato). Uno de los problemas que pueden surgir es que las aspas corten las mangueras de alimentación, lo cual hace que el repostaje en clima turbulento sea más complicado todavía.
Los aviones HC-130 están especialmente diseñados para abastecer helicópteros, y son muy útiles para ello debido a que su velocidad y gran estabilidad son similares a las de estos aparatos, los cuales tienen problemas para reabastecerse de reactores. Éstos tienen una velocidad mínima muy elevada en comparación con la velocidad máxima de los helicópteros.

Así mismo, también hay sistemas de pértiga que poseen mangueras especiales, las cuales se acoplan a la pértiga antes de comenzar el vuelo. Esto se hace así para asegurar que el tanquero podrá suministrar combustible a aviones equipados con el sistema de cesta y sonda, por ejemplo en el caso de tanqueros de la USAF operando con aviones de la OTAN.

Existen sistemas de pértiga que poseen una manguera corta al final de la misma, estabilizada también por una cesta. La forma de operar tiene similitudes con ambos sistemas, con el piloto del avión receptor enganchando la sonda y el operador de la pértiga manteniéndola en la posición adecuada.

Unidades adaptadoras entre sistemas

Existen también aviones que poseen el sistema de pértiga convencional, más dos sistemas de cesta y sonda, uno en cada ala. En este caso se los conoce como MPRS (Multi-Point Refueling System, o Sistema de Reabastecimiento multipunto), ya que estos aviones permiten transpasar combustible a dos o tres aviones al mismo tiempo en cualquiera de esos puntos. Por otra parte, hay también algunos aviones que tienen los dos sistemas pero en la línea del fuselaje, de manera que solamente pueden reabastecer a un avión a la vez, ya que ambos sistemas no se pueden desplegar al mismo tiempo. Estos aviones, aunque parezcan poco útiles, tienen la facultad de facilitarle la tarea a los aviones más grandes. Ciertos cargueros o aviones de gran tamaño tienen el sistema de cesta y sonda, pero por causa de su escasa maniobrabilidad no pueden adaptarse fácilmente a las unidades que el tanquero tiene bajo las alas. Volando más bajo que el tanquero, sobre su estela, tienen un mejor comportamiento y es más fácil enganchar la cesta.

Otros sistemas

El problema del reabastecimiento en vuelo despertó, obviamente, la imaginación de muchos ingenieros. De ahí que hayan surgido otras ideas que fueron probadas pero no satisfactoriamente.

Sistema «ala a ala»

Similar al sistema de sonda, resultaba más complicado. El tanquero tenía una manguera flexible en la punta del ala; el receptor, volando a la misma velocidad y altura, se ponía a su costado. Entonces debía tomar la manguera con un sistema de amarre en su propia punta de ala. Cuando se cerraba la conexión, el combustible pasaba de uno a otro. Solamente se lo usó en un pequeño número de aviones soviéticos, el Tu-4 y el Tu-16Z.

Sistemas de agarre

Aparentemente solo se lo usó dos veces, y en ambos casos funcionó; sin embargo era un método primitivo que sirvió para probar el proceso y luego se refinó. El tanquero dejaba caer la manguera de combustible, la cual debía ser tomada por el receptor en medio del aire. Entonces debía acoplarla por su cuenta, de manera que el carburante cayera o fuera movido por bombas. Así se hizo en el vuelo del Question Mark en 1929, y en la primera circunvalación aérea sin aterrizajes del Lucky Lady II.

Un poco de historia

Aunque no se logró ningún gran avance hasta terminada la Segunda Guerra Mundial, los experimentos sobre reabastecimiento en vuelo comenzaron muy temprano en el Siglo XX. Los primeros aviones eran frágiles y sus motores no eran muy buenos. Como les faltaba potencia, era difícil despegar, y no había mucho espacio para combustible. Hazañas como el cruce del Atlántico por Lindberg eran escasas, y muchas veces terminaban en tragedias; incluso cruzar el Canal de la Mancha era peligroso en una época.

Para después de la Primera Guerra Mundial, el mundo comenzó a buscar una forma de alargar todavía más el alcance de la aviación. Este tipo de tecnologías estaban en auge no solamente para usos militares, sino también civiles: el transporte de correspondencia y personas comenzaba a ser un gran negocio y un asunto de interés nacional para ciertos gobiernos.

1920 vio uno de los primeros experimentos: dos aviones, volando en formación. El que estaba encima dejó caer una manguera conectada a un tanque de combustible de mano; el que estaba más abajo enganchó la manguera, que fue conectada manualmente. Las proezas acrobáticas de este tipo, a veces con personas caminando por las alas y tomando las mangueras, se repitieron a veces. Era un comienzo bastante peligroso, pero fue dando frutos: el 27 de junio de 1923 un biplano DH-4B se mantuvo en el aire por 37 horas seguidas.

El éxito de estas pruebas no hizo más que alentar a otros; en este caso, los militares. En 1929 un grupo de voladores del Cuerpo Aéreo del Ejército Estadounidense logró un récord de 150 horas en un avión conocido como Question Mark (Signo de Interrogación) sobre Los Angeles. Al año siguiente, los avances ya eran todavía mayores: los hermanos Hunter subieron el récord a 553 horas y 40 minutos de vuelo ininterrumpido sobre Chicago. El siguiente récord fue incluso más allá: 27 días completos de vuelo en un monoplano Curtiss Robin, logrado por Fred y Al Key.

Estas experiencias eran, sin embargo, solamente experimentos y proezas de resistencia humana. No había un sistema generalizado; constantemente se estaban haciendo ensayos y mejorando las tecnologías y procedimientos, sin que se llegara a un uso práctico definitivo. En 1930 se comenzó a crear ya un sistema más seguro, con boquillas que no derramaban combustible. En el otro lado del Atlántico, Inglaterra llevaba la delantera, inventándose el sistema de sonda y lanza hacia 1934.

Para esa época, el negocio estaba en los viajes transatlánticos por avión, los cuales eran imposibles en grandes escalas. Los hidroaviones gigantes eran la promesa, y este sistema inglés fue usado para abastecer a este tipo de aviones en sus rutas oceánicas para 1938.

Curiosamente, la Segunda Guerra Mundial detuvo las investigaciones. Los países más adelantados, EEUU e Inglaterra, tenían otras prioridades y necesidades. EEUU podía producir aviones muy eficientes a nivel de consumo de combustible, y poseía muchos portaaviones que extendían el alcance de su aviación naval, mientras el resto operaba desde bases continentales. Inglaterra, por otra parte, peleaba la guerra aérea sobre su territorio, mientras sus bombarderos tenían el alcance suficiente como para llegar sin muchos problemas hasta Alemania. País que sí hubiera requerido este sistema para sus flotillas de cazas (de corto alcance) y sus alas de bombarderos (sin cuatrimotores).

Otra razón que detuviera el desarrollo del reabastecimiento fue que la Segunda Guerra Mundial vio la llegada a la cúspide de la eficiencia del motor de pistón para aviones militares. Existían verdaderas maravillas de la aeronáutica, como el P-51 Mustang, que podía acompañar a los bombarderos estadounidenses de ida y vuelta hasta Alemania, partiendo desde Inglaterra o Francia, o el B-29, que podía cruzar el Pacífico haciendo pocas escalas. Sin una necesidad acuciante por este tecnología, los esfuerzos bélicos iban a campos más prioritarios.

Sin embargo, para el final de la guerra el motor de pistón era obsoleto, y los aviones a reacción, más rápidos, eran el siguiente paso. El problema de la eficiencia del combustible volvió a surgir: como toda tecnología nueva, era poco eficiente. Los motores a reacción quemaban montones de litros de combustible, reduciendo notablemente el alcance del avión. Aunque con el tiempo se mejoraban los motores, su tecnología implicaba un mayor consumo que el de los motores de pistón.

Fue así que el reabastecimiento en vuelo se volvió imprescindible para el siguiente conflicto global: la Guerra Fría. Tanto EEUU como la URSS necesitaban llevar enormes bombarderos, cargados con artefactos nucleares muy pesados, a la otra mitad del mundo. Incluso en los mejores casos, estos aparatos podían llegar a su blanco, pero se quedarían luego sin combustible para el regreso. Sin reabastecimiento, se convertían en misiones suicidas.

En 1949 tuvo lugar, entonces, el primer reabastecimiento en vuelo de un aparato militar de serie, aunque modificado a tal fin. El bombardero estadounidense B-50 Lucky Lady II voló sin paradas por 94 horas y un minuto, dando la vuelta al mundo entre el 26 de febrero y el 3 de marzo. Despegando y aterrizando en la base aérea de Carswell, en Texas, el aparato cargó combustible en vuelo sobre África oriental, el Océano Pacífico y entre Hawaii y la Costa Este de EEUU. A partir de ese momento, el brazo aéreo de muchos países se alargó enormemente.

Fue así que se impulsó el desarrollo de grandes tanqueros, particularmente por los EEUU. Este país tenía sus bombarderos nucleares como el B-47 y B-52 en bases muy alejadas de sus objetivos. Evidentemente esto era muy malo, teniendo en cuenta que se tardaba mucho en alistar a las naves para un ataque nuclear de represalia.

El repostaje en vuelo puede expandir enormemente el radio de acción de los cazas, evitándoles tener que llevar tanques de combustible desechables, lo cual los hace pesados y les impide usar ciertos puntos de carga. En la foto podemos ver a un cisterna abasteciendo a un caza sueco Gripen.

El reabastecimiento daba la respuesta: durante años, estos aviones se mantuvieron constantemente en el aire, alimentados por los cisternas y reemplazados cada tanto por otros escuadrones. Esto les garantizaba un ataque de represalia más rápido, asegurando la destrucción mutua de ambos bandos (en el peor de los casos) o permitiendo un ataque preventivo más efectivo. Por otra parte, con los aviones constantemente en el aire, los posibles ataques a sus bases en tierra serían inútiles.

Otro país que necesitaba mucho de estos aparatos era el Reino Unido, y hacia finales de la década de 1950 se comenzaron a desarrollar a partir de bombarderos Valiant reconvertidos. Con bases en India, Singapur y otras partes alejadas del antiguo imperio, había numerosas hipótesis de conflicto y formas de ejercitar estos operativos. También los cazas fueron empleados en estos ensayos. Más adelante, con la retirada de los Valiant a causa de problemas estructurales, los sucesores fueron los antiguos bombarderos Victor, cada uno con tres unidades de manguera y cesta.

El desarrollo de estos sistemas tuvo dos grandes ventajas inesperadas. Una de ellas fue que no solamente los bombarderos podían extender su alcance, sino también cualquier otro aparato debidamente equipado. Esto facilitó en muchas ocasiones las operaciones de despliegue en grandes cantidades. Por ejemplo, en la Guerra de Vietnam muchos cazas y aviones de ataque al suelo no podían alcanzar el teatro de operaciones ni desde Hawaii ni desde Okinawa. En lugar de ser transportados por barco, de forma lenta y peligrosa, el reabastecimiento les permitió llegar en masa y en pocas horas a sus nuevas bases. En el caso de los cargueros, el negocio era mayor, ya que podían viajar más cargados de material o personal, sin preocuparse por la autonomía.

Tipos de tanqueros

La otra ventaja del uso de tanqueros es que permitió a muchos países darle un nuevo uso a grandes aparatos que de otra manera hubieran tenido que ser desechados.

Más allá de las diferencias técnicas, de sistemas de aprovisionamiento, tamaño, etc., los cisternas o tanqueros derivan siempre de aviones previos, generalmente usados. Diseñar un modelo de avión diferente para esta labor es totalmente innecesario, porque las características básicas de un tanquero son pocas: que tenga mucho espacio interno para combustible, que tenga una buena autonomía, y que sea lo suficientemente grande como para abastecer a varias aviones (si es posible al mismo tiempo).

Por un lado están los derivados de bombarderos; varios ejemplos son los ya mencionados Valiant y Victor ingleses, aparatos que ya eran obsoletos para el combate. La URSS hizo lo mismo con aparatos como el M-4 Bison, un bombardero nuclear fracasado, o el Tu-16, del cual han existido versiones cisterna. Por lo general los bombarderos son reconvertidos cuando se declaran obsoletos o cuando sus horas de vuelo restantes no son suficientes como para mantenerlos en alerta en operaciones de primera línea. La principal ventaja de estos aparatos es que ya poseen un gran espacio interno para guardar el combustible.

En otra época esta solución era la más adecuada, ya que era relativamente barata y rápida. Durante la Guerra Fría ciertos modelos de bombarderos estratégicos nucleares fueron producidos en gran cantidad, de manera que al hacerse viejos podían ser adaptados en un número lo suficientemente grande como para equipar varios escuadrones. Sin embargo, con el cambio de los conceptos de guerra aérea y la caída de la carrera armamentística, los bombarderos grandes son producidos en números mucho menores, y los que todavía vuelan (como el B-52) son muy cuidados por los militares ya que son un importante factor disuasorio. De manera que la época de los cisternas ex-bombarderos prácticamente ha terminado.

Construir tanqueros en base a cargueros también es un buen negocio, y estos conforman el segundo grupo. Uno de los ejemplos más conocidos es el KC-130 basado en el Hércules. Por lo general, como los cargueros son relativamente baratos, los tanqueros no siempre salen de excedentes o aparatos usados, sino que son construidos como cisternas desde cero o cuando algunas unidades quedan relegadas por la llegada de modelos más modernos.

El VC10 británico es un buen ejemplo de avión civil convertido a cisterna militar. Con tres unidades de mangueras (una en cada ala y otra en el centro del fuselaje) puede reabastecer a tres cazas al mismo tiempo, multiplicando varias veces su potencial bélico.

Finalmente, el tercer grupo de tanqueros surge de la reconversión de aviones de pasajeros. Desde hace tiempo la USAF utiliza versiones de transportes civiles Boeing, como el archiconocido KC-135 Stratotanker (derivado de un diseño previo al B707). Otro ejemplo es Gran Bretaña, que ha usado tanto VC10 nuevos como otros ex-civiles comprados a aerolíneas, además del Lockheed Tristar.

Estos aparatos tienen la gran ventaja de que están fácilmente disponible en gran número en el mercado civil, ya sea como usados o como nuevos. Hay una gran cantidad de repuestos y conocimiento de vuelo y mantenimiento. Pero la gran ventaja es que son mucho más versátiles. Algunos de los modelos no son cisternas dedicados, sino que son reconstruidos de manera que pueden ser modificados en transportes VIP, convencionales o tanqueros parciales.

Desde hace unos años, con el declive del uso de antiguos bombarderos estratégicos, el uso de estos aparatos como cisternas se ha afianzado enormemente. La Guerra en Afganistán, la de Irak de 2003 y otros acontecimientos mundiales han demostrado a las grandes fuerzas aéreas del mundo occidental la enorme necesidad de los cargueros pesados para sus labores logísticas. Estos aparatos, ahora mucho más caros, son extremadamente necesarios y experimentaron en los últimos años un récord de uso, de manera que ceder a su uso como tanqueros sería contraproducente para el esfuerzo bélico y/o humanitario de las grandes naciones.

Es por eso que existe actualmente una gran batalla por la normalización, a nivel mundial, de nuevos tipos de tanqueros derivados de modelos civiles. Las grandes empresas aeronáuticas con vertiente civil y militar, Boeing y Airbus, aprovechan la gran cantidad de pedidos y el hecho de que sus departamentos de diseño amortizan más fácilmente el trabajo de años.

Los tanqueros de nueva concepción plantean además un rol dual: ser tanto cisternas como aviones de transporte, pudiendo cargar palets tanto civiles como militares, para ayudar al despliegue de tropas o para enviar ayuda humanitaria a cualquier parte del mundo. El ejemplo más nuevo de este tipo de aviones es el Airbus A330 MRTT (MultiRole Tanker Transport, Tanquero Transporte Multirol). Adquirido ya por varias fuerzas aéreas, deriva del modelo civil A330 y carga gran parte de su combustible en las alas, dejando el fuselaje para carga mixta.

Existió una gran pelea burocrática y política en el seno de la USAF, pues este avión, denominado KC-45 y co-producido con Northrop Grumman, ganó un concurso que pretendía elegir al sucesor del vetusto Stratotanker, que está en servicio desde 1957. Siendo que el último KC-135 data de 1965, la flota entera necesitaba ser reemplazada (se encargaron 179 unidades), y el hecho de que una empresa europea le quite a Boeing el monopolio de los cielos en un campo tan emblemático no cayó nada bien. A pesar de que la USAF posee un gran problema logístico entre manos, las autoridades correspondientes admitieron la queja de Boeing. En 2009 se propuso la convocación de un nuevo concurso, pero Northrop Grumman decidió no presentarse bajo sospechas de que este nuevo concurso tendría reglas diferentes, que favorecerían a Boeing. En 2010, Airbus SE decidió presentarse al concurso, que como era de esperarse, fue ganado por el Boeing KC-46 Pegasus.

¿Porqué el reabastecimiento en vuelo es usado solo por los militares?

Hay varias razones de por qué sucede esto. En primer lugar, los costos. Es necesario tener aviones tanqueros, especialmente modificados, que luego no sirven para otra cosa más que para eso. Ciertamente se pueden adosar sistemas de reaprovisionamiento en las alas, pero en definitiva el costo extra de materiales, modificaciones y entrenamiento no les resultaría rentable a las empresas de transporte civiles.
Otra razón es que las aerolíneas tienen una forma diferente de operar. En primer lugar, para ellas el tener que hacer un aterrizaje no es algo malo, ya que permite que los pasajeros suban y bajen, dando lugar a opciones en la ruta de vuelo. Es particularmente difícil, a veces, encontrar vuelos directos desde un punto hacia otro, sin que haya escalas y trasbordos. Para los militares, en cambio, que un avión tenga que descender es perderlo por un tiempo más o menos largo, durante el cual no puede realizar sus funciones.
Además, los aviones son totalmente diferentes. Muchos aviones militares (principalmente los cazas y cazabombarderos y los de ataque) operan en las condiciones impredecibles que dicta el combate. Pueden darse muchos factores que luego requieran repostaje aéreo: daños en los tanques de combustible, lanzamiento forzado de tanques desechables (si la formación es emboscada y debe entrar en combate), un largo combate aéreo a gran velocidad y/o a baja altura, etc. Los aviones militares, así como sus pilotos, deben estar listos para todo, y el repostaje en vuelo reduce casi a cero el problema de quedarse sin combustible. En otras épocas, este problema era suficiente como para cancelar misiones, perder aviones e incluso pilotos.
En cambio, los aviones de pasajeros están diseñados de manera más «frágil» ya que su forma de uso es mucho más predecible y repetitiva. Los motores se diseñan para tener su máximo de eficiencia a cierta velocidad de crucero, que será siempre la más utilizada, y por lo tanto permite un cálculo mucho más seguro y preciso. Los aviones militares, por otra parte, siempre tienen que tener una previsión para el caso de que un combate o situación inesperada les quite parte del combustible cargado.

Casos particulares

Es interesante comentar el uso del reabastecimiento en vuelo en cuatro guerras muy diferentes, para dar cuenta de la constante (y creciente) necesidad de este tipo de sistemas.

Guerra de Vietnam

A pesar de que la USAF tenía bases en Vietnam del Sur, muchos escuadrones estaban desplegados en Tailandia, y la distancia extra obligaba al uso de tanqueros en muchas ocasiones, no solo para alargar el tiempo de vuelo sobre el blanco sino también para permitir mayor carga de bombas y cohetes. A veces los aviones que eran dañados en combate necesitaban ser reabastecidos en el viaje de vuelta, ya que habían perdido tiempo y combustible en atacar o defenderse de sus agresores. Otros casos más graves eran los aviones con los depósitos de combustible dañados. Estos aviones debían engancharse a los tanqueros y volar junto a ellos, absorviendo directamente el combustible para sus motores, hasta que llegaban a una distancia segura de la base y aterrizaban con lo justo.

La US Navy disponía de muchos portaaviones desde donde despegaban sus cazas y cazabombarderos, y tenían un sistema totalmente diferente, utilizando aviones tanqueros más pequeños con el sistema buddy-buddy (de compañero a compañero). Estos aparatos, como el KA-3 Skywarrior (el cual previamente había sido un avión de ataque a tierra y luego de guerra electrónica), podían ayudar a aviones navales o de los marines a llegar a cualquier parte. En muchas ocasiones, los aviones llevaban con suficiente combustible para un aterrizaje, pero si fallaban su aproximación al portaaviones requerían tomar carburante de un cisterna para volver a intentarlo.

Un KC-135 Stratotanker reaprovisionando a un F-16 Fighting Falcon.
En la actualidad, el reabastecimiento en vuelo permite el despliegue de enormes cantidades de aviones desde bases alejadas de los distintos teatros de operaciones. En la Segunda Guerra Mundial, estos aparatos debían llegar en barco a Europa desde EEUU, realizando viajes lentos y peligrosos. Ahora basta con una cuota de organización para que escuadrones enteros vuelen hacia cualquier parte del mundo y se desplieguen en esas bases. (U.S. Air Force photo by Tech. Sgt. Mike Buytas)

Guerra de las Malvinas

Tanto argentinos como británicos sufrieron los problemas logísticos que causaban la poca disponibilidad de tanqueros, ya que ambos bandos tenían grandes flotillas de cazas u cazabombarderos muy alejados del teatro de operaciones.

Por un lado, los británicos, aunque tenía una flotilla de cisternas Handley Page Victor K.2, no tenían un lugar cercano desde donde desplegarlos. Estos aviones tenían su base en la Isla Ascensión, en medio del Atlántico, y debían realizar grandes viajes ida y vuelta para ponerse a tiro de la aviación de caza en las islas. Todo lo cual consumía tiempo, combustible y logística. Tal vez una de sus contribuciones más sonadas fue el reabastecimiento en vuelo de los Avro Vulcan que intentaron bombardear Puerto Argentino en repetidas ocasiones. Estos vuelos, los más largos de la historia hasta ese momento, no dieron mucho resultado, pero demostraron que las operaciones de bombardeo a grandes distancias eran posibles.

El lado argentino, aunque mucho más cerca de las islas, tuvo un problema similar. Su aviación de caza era de corto alcance. No existía uniformidad en los modelos de cazas y cazabombarderos, de manera que algunos tenían sistemas operativos de reabastecimiento y otros no. Por ejemplo los A-4, que tenían un sistema standard de base al ser aparatos retirados de la US Navy no tuvieron problemas. Por otra parte los aviones Mirage III y Dagger, de origen israelí, no habían sido adaptados y podían alcanzar las islas con muy poco tiempo de vuelo sobre ellas, obligando al uso de tanques de combustible lanzables que dificultaban las misiones si los Harrier los emboscaban. Es evidente que esto impidió que estos cazas pudieran crear un paraguas de protección eficaz en la zona.

Ningún modelo de cazabombardero podía operar desde la pista de aterrizaje de Puerto Argentino, y todos debían despegar desde el continente. Lamentablemente solo existían dos aviones cisternas KC-130H que eran usados tanto por la Fuerza Aérea como por los aviones Super Etendard de la Armada en sus misiones con misiles Exocet. Esto dificultaba tremendamente la logística, y se puede argumentar que, de tener más cisternas, se hubiera podido crear una mayor concentración de poder aéreo en la zona. Para colmo estos aviones a veces se arriesgaban acercándose peligrosamente a la zona de cobertura aérea británica, para ayudar a cazas perdidos o dañados que requerían combustible.

Segunda Guerra del Golfo Pérsico (1991)

La importancia del despliegue aéreo estadounidense e inglés, particularmente, hizo necesario reservar esfuerzos logísticos para mantener en vuelo a estos aparatos. Curiosamente no fueron tanto los bombarderos los que necesitaron de combustible, sino más bien los cazas y aviones de ataque a tierra, los cuales tenían misiones de larga duración con gran permanencia en ciertas áreas.

Numerosos modelos de aviones cisternas tomaban posiciones establecidas en la zona neutral entre Irak y Arabia Saudita. Despegando desde bases cercanas en Diego García y el territorio saudí, mantenían dos sendas paralelas en las que constantemente volaban varios aparatos. Mientras tanto los portaaviones estadounidenses lanzaban a estas zonas aviones KA-6 para reaprovisionar a los aviones de la US Navy. Ninguna cesta o pértiga estaba de más; los tanqueros británicos con triple sistemas de cesta eran populares ya que permitían que tres aviones repostaran al mismo tiempo, ahorrando así tiempo valioso. La cantidad de aviones de todo tipo y nacionalidad que volaban en aquellos corredores hacían que se crearan zonas aledañas para reabastecer, por ejemplo, a los aviones de guerra electrónica o a los cazas F-14. Estos escuadrones de cisternas, volando 7 días a la semana y 24 horas del día mantuvieron en el aire a centerares de aviones de todo tipo y cometido por el tiempo que duró la campaña aérea y terrestre.

También existieron casos especiales, como el del 16 y 17 de enero de 1991, cuando siete bombarderos B-52 partieron desde EEUU para atacar con misiles crucero diversos blancos en Irak. Para esta misión, que no partía de la cercana Diego García, fueron necesarios varias repostajes. Todo lo cual demostró que el diseño de los aparatos y el entrenamiento de las tripulaciones, aunque no fue usado en combate en la Guerra Fría, era importantísimo para el despliegue en el teatro de operaciones.

Conflicto en Kosovo

El primer despliegue real de la OTAN puso de manifiesto nuevamente la gran importancia del reabastecimiento aéreo, siendo que ciertos aviones, como el bombardero B-2, no podían operar desde las bases europeas y debían despegar desde EEUU, siendo reabastecidos varias veces.

Sin embargo esto mostró también que ciertos países no estaban suficientemente preparados para despliegues de esa magnitud. La USAF puso a disposición de la Alianza un 90% del total de aparatos desplegados, unos 175 aparatos. El resto fue provisto por la RAF inglesa, la Fuerza Aérea Francesa, la Fuerza Aérea Turca, la Fuerza Aérea Holandesa y el Ejército del Aire Español. Estos aportes fueron escasos, sin embargo, para el total de operaciones, y ciertos países como Italia vieron la necesidad de comprar aviones cisterna.