F-22 Raptor

Características de diseño y construcción

Como un avión de 5º generación, al Raptor se le exigían muchos avances y mejoras sobre todo lo ya existente. Muchos requisitos exigidos por el programa ATF parecen haber sido alcanzados, pero a cambio de grandes costos en tiempo, dinero y otros recursos (ver El Raptor en cifras). El F-22 debía ser capaz de lograr una velocidad de supercrucero y alta maniobrabilidad (responsabilidad de la planta motriz), llevar una gran carga de armamento aéreo y una muy alta furtividad. Finalmente, debía ser capaz de realizar combate aéreo BVR (Beyond Visual Range, más allá del alcance visual) y era vital para su condición de caza supremo un excelente radar y aviónica de última tecnología.

Aunque estos logros son altamente publicitados y alabados, principalmente por fuentes estadounidenses, hay muchos que creen que no son más que promesas vacías que luego no podrán ser probadas en la realidad del combate aéreo (ver Análisis de una posible catástrofe).

 

 

Configuración general

El Raptor se presenta como un caza con ciertas características típicas, como su cabina monoplaza elevada sobre la línea del fuselaje para mejorar la visibilidad. Rápidamente se distinguen las líneas quebradas de todo el aparato, diseñadas para que no haya ángulos rectos que aumentel el área de cruce radar o RCS. Esto se aprecia particularmente en las alas y superficies de control de la cola.

La nariz del avión tiene forma de daga, y recuerda un poco, desde abajo, a la del SR-71, justamente por cuestiones de aerodinamia y furtividad. Las tomas de aire, inclinadas por esta misma razón, corren a los costados de la gran bahía de armas interna, en donde está almacenado la gran parte del armamento ofensivo del Raptor. En la parte externa de las mismas, a su vez, hay sendos compartimentos que contienen más misiles, esta vez de corto alcance.

Las alas son del tipo trapezoidal, que dan un buen rendimiento tanto en velocidades subsónicas como supersónicas. Los planos "verticales" están, como en muchos aviones con características furtivas, inclinados de manera que reflejan las ondas del radar lejos del receptor.

Una de las características llamativas del Raptor a nivel de diseño, comparado con la mayoría de los aviones contemporáneos y anteriores, es que sus toberas están empotradas dentro de la la línea del fuselaje, por detrás de las superficies de control de la cola. Esto se hace en gran parte para esconder su firma infrarroja al cubrirla desde varios ángulos.

 

Aviónica

Sin lugar a dudas, uno de los principales puntos fuertes y de los más publicitados del Raptor ha sido su radar, el Northrop Grumman AN/APG-77. Con un alcance estimado de entre 200 y 240 kilómetros, es sin duda uno de los que más prometen, sobre todo teniendo en cuenta que algunas mejoras futuras pueden extender, según se dice, su alcance a unos 400 kilómetros en ciertos modos de combate.

Esta maravilla de la tecnología ha requerido de grandes inversiones en tiempo y dinero, además de un complejo software para poder ser operado con todas las ventajas que presenta. Se trata de un radar optimizado para las operaciones de superioridad aérea, que puede rastraer blancos múltiples en todo tipo de climatología. Al cambiar de frecuencia al menos unas 1.000 veces por segundo, se reduce en gran medida la posibilidad de ser interceptado, de manera que es publicitado por muchos como un "radar furtivo" (una definición sin duda algo contradictoria). Supuestamente, es tan poderoso y preciso que puede sobrecargar los radares enemigos, enfocándose en ellos de manera que los deja ciegos.

Los radares AESA como el que equipa al Raptor no poseen una sola antena, sino miles de ellas, mucho más pequeñas, pero coordinadas entre sí. Al no tener partes móviles no poseen limitaciones mecánicas: la velocidad de un barrido completo es casi cero, y el campo de visión aumenta notablemente, llegando a los 120º hacia arriba y los costados.

El AN/APG 77 es el primer radar AESA operacional (Active Electronically Scanned Array, o Arreglo de Escaneo Electrónicamente Activo). Los radares de este tipo no están compuestos por una sola antena emisora/receptora, sino por una serie de pequeños "mini-radares" enlazados en la nariz del aparato. En lugar de moverse para rastrear el cielo, cada una de ellas coopera para escanear diferentes partes, facilitando así la detección y seguimiento de gran cantidad de blancos. De hecho, el haz de señales de radio no se mueve, sino que, al ir apagándose y prendiéndose los radares, que se crea un haz de búsqueda "virtual". Diferentes secuencias de encendido y apagado crean diferentes patrones de búsqueda y seguimiento.

El AN/APG 77 del Raptor posee nada más ni nada menos que 1.500 transmisores/receptores del tamaño de un chicle. Una gran ventaja de los radares AESA es que no están limitados por partes mecánicas. Las antenas de radar solo tienen un estrecho campo de emisión (un cono en el cual puede enfocarse, como el haz de una linterna); para mover ese haz de ondas hace falta que la antena se mueva. La velocidad de movimiento de la antena puede hacer que se pierdan blancos; pero en el APG 77 se puede realizar un barrido completo casi instantáneo, del orden de los nanosegundos. La enorme complejidad de esta tecnología superminiaturizada ha elevado sin duda el costo del aparato y el tiempo requerido para su desarrollo.

A pesar de que cada emisor es pequeño, puede enviar la suficiente energía como para realizar detección a gran distancia, estando coordinado con los emisores aledaños. Una ventaja asociada es que se desperdicia poca energía ya que los haces individuales están más enfocados; la otra es que al poder controlar la potencia de cada uno de los emisores, se logra un radar más difícil de detectar.

Para controlar todo esto hizo falta crear un complejo sistema de procesamiento, integrado por dos procesadores capaces, cada uno, de manejar 10.500 millones de instrucciones por segundo. Este sistema recoge información tanto del radar como de otros sensores, incluyendo sensores externos como los radares de otros aviones enlazados. El código para controlar todo esto está integrado por una gran mayoría de las 1,7 millones de líneas de código que forman el software completo del Raptor.

La potencia, precisión y supuesta furtividad del radar trae aparejada otra ventaja para el Raptor: se dice que puede funcionar como un avión de inteligencia electrónica, además de servir como un mini-AWACS (sobre todo cuando el avión se ha quedado sin misiles, momento en el cual puede permanecer haciendo reconocimiento electrónico y ayudando a nuevos atacantes). Las capacidades de su radar le permitiría escuchar a los radares enemigos, detectar e identificar diferentes tipos de blancos gracias a las señales de radio, y así coordinar con otros aviones aliados un mejor plan de ataque. De hecho, el radar puede transmitir en una frecuencia especial de manera de transmitir información a gran velocidad con otras aeronaves. En 2007 diversas pruebas realizadas por los fabricantes demostraron que el AN/APG 77 podía transmitir a una velocidad de 548 megabits por segundo y recibir datos a un gigabit por segundo, muchísimo más rápido que el sistema utilizado por la USAF y otros países que solo permite la transferencia de 1 megabit por segundo.

Como en muchos otros aviones de combate, los alertadores radar o RWR juegan un importante papel a la hora de avisarle al piloto que el enemigo lo ha detectado y está por atacarlo (o ya lo ha hecho). El sistema de recepción pasiva del Raptor, denominado AN/ALR-94, es también un paso adelante en esta tecnología, y comprende más de 30 antenas suavemente integradas al fuselaje y las alas, dispuestos de manera de captar información en todas direcciones y presentarlas al sistema para su interpretación. Según han dejado saber sus diseñadores, es tal vez la pieza más compleja del aparato. Se supone que tiene un alcance aún mayor que el radar propio (superando a las 250 millas náuticas), de manera que el piloto puede teóricamente saber qué está sucediendo (electrónicamente hablando) sin tener que usar el sistema activo. Los dos sistemas están integrados, de manera que, si el RWR detecta una amenaza antes de que ésta esté al alcance del radar, se la comunicará y una vez llegado allí, el AN/APG-77 tomará el relevo.

El Raptor también posee un sistema de alerta para misiles que se aproximan, el AN/AAR-56, que los detecta utilizando rayos infrarrojos y ultravioletas.

Todo esto sería difícil de utilizar en combate de no ser porque la información se presenta de manera ordenada y eficiente. La cabina del F-22 es totalmente futurista, diseñada sin ningún tipo de instrumento o sensor analógico. Se ha volcado en ella no solo la mejor tecnología, sino años de pruebas y ensayos sobre ergonomía y facilidad de uso, de manera que el piloto no se vea sobrecargado de información y tenga todo al alcance de la mano y los ojos. Una de las piezas características de la cabina es la enorme cúpula de cristal de una sola pieza.

Esta suma de sensores y sistemas de presentación de datos aumentan notablemente las posibilidades de éxito en combate. Se trata de asegurar que el piloto sea el primero en ver, disparar y destruir al enemigo.

Las últimas versiones del radar del Raptor incorporan opciones para el ataque a tierra, como el mapeado de alta resolución con apertura sintética del radar, seguimiento de blancos en movimiento, reconocimiento automático e identificación de combate. Esto aprovecha la enorme potencia del radar para ayudar al F-22 a realizar misiones de ataque a tierra.

 

 

Planta motriz

Uno de las principales pedidos del ATF era una maniobrabilidad superior a la del F-15, avión al que el F-22 debía reemplazar. Además de mejorar la aerodinamia, se debía pensar en un nuevo tipo de motor que diera capacidades extraordinarias a la aeronave. Sobre todo porque el diseño furtivo entraba a veces en conflicto con los requisitos de dicha maniobrabilidad.

El motor elegido para el Raptor fue F119-PW-100 de Pratt & Whitney, una de las empresas líderes en motores a reacción.

Su característica más fácil de ver es que se trata de un motor TVC (Thrust Vector Control, Vector de Empuje Controlado) en 2D: es decir, que la tobera de dicho motor podía moverse hacia arriba y hacia abajo (hasta unos 20º en cada sentido). Esto hace que el Raptor se convierta en un avión altamente maniobrable, tanto en velocidades subsónicas como supersónicas, cumpliendo así con los requisitos del ATF. Utilizando el empuje vectorizado de los motores, el F-22 puede dar giros muy cerrados y ejecutar maniobras en grandes ángulos de ataque, pudiendo sostener uno de más de 60º de manera constante sin que el piloto pierda el control.

Una prueba estática del motor F119. Sin duda alguna, un espectáculo impresionante.

Además de su capacidad de vectorizar el empuje, debía ser un motor capaz de soportar un buen castigo, principalmente a causa del uso constante. El sistema debía tener una vida útil por encima de la de motores contemporáneos, además de más potencia. Los requisitos de letra chica, implicaban, de hecho, alcanzar un difícil equilibrio entre grandes capacidades, seguridad, confiabilidad y un bajo costo de mantenimiento. Esto tenía que lograrse reduciendo significativamente la cantidad de componentes: el F119 da 20% más de potencia con 40% menos de partes que los motores convencionales de cazas de cuarta generación. Se calcula que cada uno de los motores del Raptor posee un empuje de 160 kiloNewtons, o 35.000 libras de fuerza (la potencia exacta está clasificada).

Y es que otro de los requisitos que debía pasar este motor era el de ser capaz de impulsar al Raptor a velocidades supersónicas sin tener que utilizar la poscombustión durante gran parte de su misión. Esta habilidad, conocida como supercrucero, era uno de los requisitos principales del F-22, uno de los más claramente publicitados, alabados y confundidos (ver más abajo).

Los motores convencionales de aviones de combate poseen sistemas de poscombustión, que aumentan enormemente la potencia. Al inyectar combustible directamente en la tobera de escape, estos posquemadores le dan un empuje adicional al aparato; sin embargo, como el proceso es crudo y poco controlado (ya que no se realiza dentro de una cámara de combustión), se desperdicia una gran cantidad de combustible. Usar los posquemadores puede ser muy necesario en combate aéreo ya que supone, a veces, pasar a modo supersónico; pero al hacerlo el avión reduce su alcance y genera una gran estela de calor que puede atraer sensores enemigos.

Es por eso que los cazas actuales solo encendían la poscombustión para huir supersónicamente o para realizar alguna maniobra puntual que requiriera mucha energía. Sin embargo, para ahorrar combustible debían regresar pronto a su velocidad de crucero (es decir, la velocidad a la cual consume más eficientemente el combustible, y por lo tanto la que se utiliza durante la mayor parte del vuelo). El vuelo sobre la barrera del sonido duraba pocos minutos, incluso segundos, y luego había que regresar a la base volando de manera más conservadora.

La idea era que el F119 pudiera impulsar al Raptor a velocidad supersónica sin necesidad de posquemadores, logrando así que la velocidad de crucero estuviera por encima de Mach 1. Esto le implicaría un gran ahorro de combustible (y por lo tanto de peso), y también una mejora en el alcance, el cual era otro de los requisitos básicos del programa ATF. Según se sabe, el F119 puede empujar al F-22 a velocidades por encima de Mach 1.4 sin los posquemadores, y a Mach 2 con ellos. Así mismo se calcula que la velocidad máxima teórica del F-22 es de Mach 2.5, pero el dato preciso es clasificado y no se sabe por lo tanto cual es el límite de los motores.

Sin embargo, algunos discuten la verdadera eficacia de este concepto de supercrucero, y plantean definiciones diferentes que critican seriamente la futura eficacia del F-22 (ver Análisis de una posible catástrofe).

 

 
Video que muestra la tobera del F119 en una prueba de laboratorio. Al variar el ángulo de la salida de gases calientes, el Raptor puede realizar maniobras imposibles para aviones más antiguos que no disponen de esta tecnología.

 

Armamento

Como caza puro, el Raptor fue diseñado para llevar gran cantidad de misiles antiaéreos. Estos están almacenados en una serie de bahías de armas internas, de manera de mantener su furtividad al radar y mejorar la aerodinamia al reducir la resistencia al aire, logrando así más alcance y velocidad. Esto ha generado algunos obstáculos de ingeniería más o menos grandes. El avión tuvo que ser diseñado como una envoltura de dicha bahía de carga, lo cual fue un factor condicionante. Además de la forma, hubo que pensar en muchos detalles, principalmente los lanzadores de misiles.

Existieron varios aviones de combate tácticos con bahías de armas internas, como el F-111, el F-117, e incluso varios cazas de la época de Vietnam. En todos ellos uno de los grandes problemas han sido el lanzamiento de las armas, que se hace más complejo y limita la movilidad del aparato. No se puede lanzar un arma con el avión cabeza abajo, o mientras realizaba giros bruscos, como los de un combate de cazas. El gran peligro es que el arma, por la fuerza de gravedad, pueda regresar dentro de la bahía o incluso golpear al aparato en otra parte, dañándolo o estallando.

El Raptor, como caza de 5º generación, debe ser capaz de disparar sus misiles en cualquier momento, sea cual sea su posición y velocidad. Es por eso que el sistema de eyección de misiles es tan importante: aquí lo vemos con sus dos bahías de armas abiertas y listo para lanzar un Sidewinder de práctica.

En el F-22 esto era un problema mayor, debido a la alta velocidad de crucero y su gran maniobrabilidad. De manera que el problema se atacó con todo tipo de soluciones. En la bahía de armas principal, bajo la cabina, seis lanzadores con sus correspondientes misiles están listos para ser lanzados en todo momento. El arma principal del Raptor, el misil AMRAAM, va montado en un lanzador hidro-neumático, denominado LAU-142/A o AVEL (AMRAAM Vertical Eject Launcher, Lanzador Eyector vertical de AMRAAM). Un fuerte brazo, alimentado por los sistemas hidráulicos de la nave, puede lanzar el misil a una velocidad de 7,5 metros por segundo, logrando una aceleración de 40G. Esto permite que, en cualquier momento de una maniobra, por intrincada y brusca que sea, el misil salga totalmente del avión y se separe mucho del mismo, de manera que no pueda golpearlo o quedarse atascado por las fuerzas gravitacionales. El proceso completo de abrir las puertas de la bahía de armas, eyectar el misil, encender el mismo y cerrar las puertas solo toma segundos.

Se han mantenido las lecciones aprendidas sobre la necesidad de armas de emergencia: un cañón rotativo Vulcan M61A2 de 20 mm con 480 proyectiles permite al menos 5 segundos de fuego sostenido. Se trata de un arma que puede parecer poco relevante pero que se convierte en indispensable en caso de terminarse los misiles. El cañón está situado en la raíz del ala derecha, cubierto por una pequeña tapa de material absorvente al radar.

En sus misiones como caza, el F-22 lleva seis misiles AIM-120C (de largo alcance, BVR, en la bahía de armas principal) y dos AIM-9 Sidewinder (de corto alcance, en bahías de carga secundarias junto a los motores).

Uno de los inconvenientes con las bahías de carga es que no permiten el uso de una gran cantidad de armas, principalmente bombas guiadas y misiles aire-tierra que no tengan la forma o el tamaño apropiado. Esto no es gran problema para el Raptor, que fue diseñado como caza puro, pero ha limitado su supuesta capacidad polivalente de ataque a tierra. Cuando el F-22 fue redesignado F/A-22, en un intento por ganar adeptos y apoyo político, se lo adaptó para que pudiera realizar misiones de ataque a tierra, aunque con armas pequeñas. Aunque la denominación se dejó de lado más tarde, el Raptor sigue teniendo una capacidad limitada aire-tierra, pudiendo cargar dos bombas JDAM de 450 kg, sacrificando 4 AMRAAM de la bahía de armas principal. De esta manera el Raptor puede apoyar a otros aviones de ataque a tierra mientras mantiene la supremacía aérea sobre la zona.

En este sentido, la gran velocidad de crucero que puede mantener el F-22 y su altura operacional le permiten incrementar en buena medida el alcance de sus armas. Siendo que la plataforma de lanzamiento vuela muy rápido y muy alto, las bombas guiadas y los misiles parten con una energía cinética mayor y tienen más tiempo para aumentarla gracias a la gravedad. De esta manera se calcula que el nuevo AMRAAM, la versión 120D, tendrá un alcance mucho mayor que la C actual al ser usada en el Raptor. Aunque muchos de estos cálculos son clasificados, se piensa que una bomba JDAM tendrá al menos el doble de alcance que al ser lanzada desde plataformas anteriores. En una prueba, un F-22 lanzó una bomba de 450 kg. a 15.000 metros de altura, volando a Mach 1.5 y logrando impactar un blanco a 39 kilómetros.

Una rara fotografía del F-22 lanzando sus tanques de combustible externos.

Aunque las bahías internas de carga son un elemento importante y muy publicitado del Raptor, un detalle no tan conocido es el hecho de que mantiene cuatro puntos fuertes en sus alas, de manera que puede llevar armamento externo en casos de gran necesidad, a costa de perder gran parte de su furtividad al radar.

En realidad, el motivo principal de estos pilones (al menos, de dos) es la necesidad de llevar tanques de combustible externos. Si bien los cuatro soportan hasta 2.300 kg de peso, suficientes como para llegar un lanzador con dos misiles aire-aire, los dos internos son húmedos, es decir, están preparados para el transpaso de combustible al cargárseles tanques de hasta 600 galones. Una particularidad de estos puntos fuertes es que, al lanzarse el armamento o desengancharse los tanques, los pilones que los sostienen también son eyectados. De esta manera el Raptor recupera su limpia silueta, sin piezas protuberantes que puedan comprometer su furtividad.

Se trabaja, además, en contenedores de armas que cubran a las mismas, de manera que el Raptor pueda llevar armamento externo de manera furtiva, perdiendo solamente parte de su maniobrabilidad y alcance a causa del aumento de peso y resistencia.

 

Furtividad

Uno de los aspectos por los cuales el F-22 se ha hecho más famoso es su supuesta invisibilidad al radar, la cual en realidad no es tal, sino una muy cuidada furtividad, que era un requisito fundamental del programa ATF. Esta se logra no solo evitando ser detectado en el radar enemigo, sino siendo menos detectable en todos el espectro de amenazas (visión, infrarrojos, sonido, etc.). Si el Raptor es el único caza de 5º generación, como muchos aseguran, es considerado también un caza furtivo de 4º generación.

Esta es la causa fundamental de la extraña forma del Raptor, en la cual no existen ángulos rectos ni agudos. La combinación de ángulos abiertos y superficies redondeadas es importante para que la sección de cruce radar no sea muy grande. El hecho de contar con avanzadas técnicas de diseño tridimensional por computadora hizo mucho para que el Raptor fuera una realidad. Otros aviones furtivos mucho más especializados, como el F-117 y el B-2, solo tenían superficies lisas o redondeadas, de acuerdo a la experiencia propia de las empresas constructuras y, principalmente, de la situación de la teoría científica y la capacidad computacional de la época. El diseño utilizada en el F-22 logra unir ambas experiencias y agrega las que se desarrollaron durante el programa ATF.

El Raptor depende más de su forma que de su piel para pasar desapercibido al radar. Nótese la ausencia de ángulos rectos o muy cerrados, y compárese las tomas de aire con las de su antecesor, el F-15.

Otra diferencia con los dos aviones furtivos mencionados anteriormente es que el Raptor depende mucho menos del RAM, o Material Absorvente del Radar. Aquí también se ha aprendido mucho, principalmente de la fragilidad de los primeros componentes utilizados. Es sabida la dependencia que el F-117 tiene de hangares especiales, sobre todo cuando tiene que desplegarse en combate en lugares inhóspitos, con elementos naturales muy abrasivos, como la arena en la Segunda Guerra del Golfo. Por otra parte, el B-2 requería de enormes hangares especialmente construidos, lo cual hacía que solo pudiera despegar y aterrizar en muy pocos lugares alrededor del mundo.

Para reducir, entonces, este problema, no solo se confió más en el diseño del fuselaje, sino que se utilizaron compuestos absorventes más elaborados y en menor cantidad. Se supone que el F-22 puede estar operando desde la línea del frente y ser reparado en situaciones de combate. Por otra parte, se creó un sistema de alarma que le avisa al personal de mantenimiento cuando el desgaste habitual del material absorvente ha degradado en demasía al mismo, dejando al Raptor "desnudo" y por lo tanto susceptible a la detección por radar.

La sección de cruce radar o RCS del Raptor es clasificada, aunque supuestamente es la más baja de cualquier aeronave conocida en el mundo.

La supuesta indetectabilidad del F-22 está reforzada, como ya dijimos, por otros sistemas. Escapar del radar es solo una de las cinco facetas que los diseñadores han cuidado a la hora de lograr su objetivo. El Raptor también posee sistemas que le permiten ser menos visibles en el espectro infrarrojo, usado por muchos misiles antiaéreos. Los motores han sido testeados para ser especialmente silenciosos. Por primera vez en mucho tiempo, este caza de la USAF ha reintroducido los esquemas de camuflaje, siendo que los F-16 y F-15 han volado siempre con colores puros. Estudios realizados sobre la combinación de dos tonos de grises revelaron que hace que sean más difíciles de detectar visualmente una vez que están volando.

 

Especificaciones técnicas del F-22A Raptor

Tripulación

uno
Longitud 18,9 metros
Envergadura 13,56 metros
Altura 5,08 metros
Superficie alar 78,04 metros
Peso vacío 19.700 kilogramos
Peso cargado 29.300 kilogramos
Peso máximo de despegue 38.000 kilogramos
Planta motriz 2 turbofans con empuje vectorial Pratt & Whitney F119-PW-100, con una potencia de más de 35,000 lb cada uno
Capacidad de combustible 8.200 kilogramos internamente, o un total de 11.900 kilogramos al usar dos tanques externos
Velocidad máxima

teórica a gran altura de Mach 2,25 (2.410 km/h)

Supercrucero de Mach 1,82 (1.913 km/h)

Techo de servicio 19.812 metros
Alcance

2.960 km con dos tanques de combustible externos

Radio de combate de 759 km

Alcance de transporte (sin armas, solo para desplazarse de base en base) de 3.219 km

Carga G máxima -3.0 a +9.0 g
Coeficiente Empuje/peso 1.08 (1.26 con el 50% de combustible)
Armamento

Una ametralladora M61A2 Vulcan del tipo Gatling, calibre 20 mm, con 480 proyectiles alojada en la razón del ala derecha.

Cuatro puntos fuertes en las alas, pudiendo cargar cada uno hasta 2.268 kg. de armas. Los dos internos permiten llevar cada uno un tanque de combustible lanzable de 600 galones.

Configuración de superioridad áerea (aire-aire): 6 AIM-120 AMRAAM y 2 AIM-9 Sidewinder.

Configuración de ataque a tierra: 2 AIM-120 AMRAAM y 2 AIM-9 Sidewinder, más 2 bombas JDAM de 450 kg. o 2 bombas GBU-39 de 110 kg (SDB, Bombas de Pequeño diámetro)

Aviónica principal

RWR (Receptor de alerta radar) con un alcance de 463 km o más.

Radar AN/APG-77 AESA con un alcance estimado de entre 200 y 240 km para blancos de 1 m2.

 

Ver también

F-22A Raptor

F-22A: Características de diseño y construcción

El Raptor en cifras

Incidentes

Análisis de una posible catástrofe

 

Búsqueda personalizada
 

 


Cuartel General | Ejércitos del aire | Ejércitos del mar | Ejércitos de tierra | Haciendo contacto
Ver también
F-22A Raptor
F-22A: Características de diseño y construcción
El Raptor en cifras
Incidentes
Análisis de una posible catástrofe